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Part 1. General measure theory

1. Measures

We wish to assign a value to the size of subsets of some given space, such as the
length, area or volume of subsets of Rm.

Definition 1.1. A measure µ on a set X is a function

µ : {A : A ⊂ X} → [0,∞]

such that

(1) µ(∅) = 0;
(2) µ(A) ⊂ µ(B) whenever A ⊂ B ⊂ X;
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(3) µ(
⋃

i∈NAi) ≤
∑

i∈N µ(Ai) whenever A1, A2, . . . ⊂ X.

A function satisfying (2) is said to be monotonic and a function satisfying (3) is said
to be countably sub-additive.

Definition 1.2. Let µ be a measure on a set X. A set A ⊂ X is µ-measurable if,
for every E ⊂ X,

(1.1) µ(E) = µ(E ∩A) + µ(E \A).

Remark 1.3. (1) Since a measure is countably sub-additive, it is sufficient to
check the ≥ inequality in (1.1).

(2) In particular, it suffices to check (1.1) for E ⊂ X with µ(E) <∞.
(3) If A is µ-measurable then so is X \A.
(4) If µ(A) = 0 then A is µ-measurable.

Definition 1.4. If µ is a measure on a set X and S ⊂ X, the restriction of µ to A
is defined as

µ|S(A) := µ(S ∩A).

Lemma 1.5. Let µ be a measure on a set X and S ⊂ X. Then µ|S is a measure
on X and any µ-measurable set is also µ|S-measurable.

Proof. The fact that µ|S is a measure follows immediately from the fact that µ is a
measure. If A ⊂ X is µ-measurable, then for any E ⊂ X,

µ|S(E) = µ(E ∩ S) = µ(E ∩ S ∩A) + µ(E ∩ S \A)
= µ|S(E ∩A) + µ|S(E \A),

as required. □

Theorem 1.6. Let µ be a measure on a set X and let M be the set of µ-measurable
subsets of X.

(1) If A1, A2, . . . ∈ M then
⋃

i∈NAi ∈ M and
⋂

i∈NAi ∈ M.
(2) µ is countably additive on M. That is, if A1, A2 . . . ∈ M are disjoint then

µ

(⋃
i∈N

Ai

)
=
∑
i∈N

µ(Ai).

(3) If A1 ⊂ A2 ⊂ . . . ∈ M then

µ

(⋃
i∈N

Ai

)
= lim

i→∞
µ(Ai).

(4) If A1 ⊃ A2 ⊃ . . . ∈ M and µ(A1) <∞ then

µ

(⋂
i∈N

Ai

)
= lim

i→∞
µ(Ai).

Proof. We first prove (1) for finite unions and intersections. If A,B ∈ M then for
every E ⊂ X,

µ(E) = µ(E ∩A) + µ(E \A)
= µ(E ∩A) + µ((E \A) ∩B) + µ(E \ (A ∪B))

≥ µ(E ∩ (A ∪B)) + µ(E \ (A ∪B))

by sub-additivity. Thus A ∪ B is µ-measurable and induction gives finite unions.
Taking complements gives finite intersections.
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To prove (2) note that the inequality ≤ is given by sub-additivity. For the other
inequality, for each i ∈ N let Ai ∈ M be disjoint and for each j ∈ M let

Bj =

j⋃
i=1

Ai,

which is measurable by (1). Note that

Bj = Bj−1 ∪Aj

and that this union is disjoint. Therefore, since Aj is µ-measurable,

µ(Bj) = µ(Bj ∩Aj) + µ(Bj \Aj)

= µ(Aj) + µ(Bj−1),

since the Ai are all disjoint. Therefore, by induction, µ(Bj) =
∑j

i=1 µ(Ai) for each
j ∈ N. Finally, for each j ∈ N, since µ is monotonic,

µ

(⋃
i∈N

Ai

)
≥ µ(Bj) =

j∑
i=1

µ(Ai)

and so letting j → ∞ gives (2).
(3) follows by applying (2) to the disjoint measurable sets Bj = Aj \Aj−1.
(4) follows from (3) by setting Bj = A1 \Aj , so that

A1 =
⋂
i∈N

Ai ∪
⋃
i∈N

Bi

and the Bj increase. By sub-additivity,

µ(A1) ≤ µ

(⋂
i∈N

Ai

)
+ lim

j→∞
µ(Bj)

= µ

(⋂
i∈N

Ai

)
+ lim

j→∞
µ(A1)− µ(Aj),

by applying (1) for finite unions. Since µ(A1) <∞, (4) follows.
Finally, to prove (1) for countable unions, for each j ∈ N let

Bj =

j⋃
i=1

Ai,

an increasing sequence, and let E ⊂ X with µ(E) < ∞. Since the Bj are µ-
measurable,

µ(E) = lim
j→∞

µ(E ∩Bj) + lim
j→∞

µ(E \Bj)

= µ

(
E ∩

⋃
i∈N

Bi

)
+ µ

(
E \

⋃
i∈N

Bi

)

= µ

(
E ∩

⋃
i∈N

Ai

)
+ µ

(
E \

⋃
i∈N

Ai

)
,

using the fact that the Bj are µ|E-measurable in the second equality. Taking com-
plements shows that countable intersections of measurable sets are measurable. □
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Definition 1.7. A collection Σ of subsets of a set X is a σ-algebra if

(1) ∅ ∈ Σ;
(2) A ∈ Σ ⇒ X \A ∈ Σ;
(3) A1, A2, . . . ∈ Σ ⇒

⋃
i∈NAi ∈ Σ.

Theorem 1.6 shows that the set of µ-measurable sets is a σ-algebra.
For Ω a set of subset of a set X, the σ-algebra generated by Ω is

Σ(Ω) :=
⋂

{Σ′ : Σ′ ⊃ Ω, Σ′ a σ-algebra}.

By Exercise 1.2, it is a σ-algebra.
The Borel σ-algebra of a topological space X is the σ-algebra generated by the

open (respectively closed) subsets of X. It will be denoted by B(X) and its elements
called the Borel subsets of X.

A measure for which all Borel sets are measurable is a Borel measure. It is Borel
regular if for every A ⊂ X there exists a Borel B ⊃ A with µ(B) = µ(A).

Theorem 1.8 (Carathéodory criterion). Let (X, d) be a metric space and µ a mea-
sure on X which is additive on separated sets. That is, whenever A,B ⊂ X with

inf{d(x, y) : x ∈ A, y ∈ B} > 0,

we have

µ(A ∪B) = µ(A) + µ(B).

Then µ is a Borel measure.

Proof. Let C ⊂ X be closed and E ⊂ X with µ(E) <∞. We need to show

µ(E) ≥ µ(E ∩ C) + µ(E \ C).

For each j ∈ N let

Ej = {x ∈ E :
1

j + 1
< dist(x,C) ≤ 1

j
}

and

E0 = {x ∈ E : dist(x,C) > 1}.

Since C is closed,

E \ C = E0 ∪
⋃
j∈N

Ej .

Moreover, the Ej with j odd are pairwise separated so

µ(E) ≥ µ(
⋃

j odd

Ej) =
∑
j odd

µ(Ej)

and so the sum is convergent. Similarly the sum over even indices is convergent and
so ∑

j≥n

µ(Ej) → 0 as n→ ∞.
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Therefore

µ(E) ≥ µ

E ∩ C ∪
n⋃

j=0

Ej


= µ(E ∩ C) + µ

 n⋃
j=0

Ej


≥ µ(E ∩ C) + µ(E \ C)−

∑
j>n

µ(Ej)

→ µ(E ∩ C) + µ(E \ C),

using the additivity on separated sets for the equality and countable sub-additivity
for the second inequality. □

Definition 1.9 (Carathéodory construction). Let (X, d) be a metric space, F a set
of subsets of X and ζ : F → [0,∞]. For each δ > 0 and A ⊂ X define

ψδ(A) = inf
∑
S∈G

ζ(S),

where the infimum is taken over all countable

G ⊂ {S ∈ F : diam(S)} < δ

such that

A ⊂
⋃
S∈G

S.

Finally, define ψ(A) = supδ>0 ψδ(A).
For any δ > 0, ψδ is a measure, as is ψ. Theorem 1.8 shows that ψ is a Borel

measure on X. Indeed, if dist(A,B) > δ then

ψδ(A ∪B) ≥ ψδ(A) + ψδ(B).

If F consists only of Borel sets then ψ is Borel regular.

Remark 1.10. The fact that ψδ′ ≤ ψδ whenever δ′ ≥ δ implies that

ψ(A) = lim
δ→0

ψδ(A).

Definition 1.11. We define some properties of a measure µ on a topological space
X.

(1) µ is locally finite if every point in X has a neighbourhood of finite measure.
(2) µ is σ-finite if there exist measurable Xi ⊂ X with µ(Xi) < ∞ and X =⋃

i∈NXi.
(3) µ is finite if µ(X) <∞.
(4) A Borel regular measure µ is a Radon measure if

(a) µ(K) <∞ for all compact K ⊂ X,
(b) µ(A) = sup{µ(K) : K ⊂ A compact} for all Borel A ⊂ X.
(c) µ(A) = inf{µ(U) : U ⊃ A open} for all Borel A ⊂ X.

Definition 1.12. Let µ be a measure on a set X. A property of points in X holds
µ almost everywhere (or µ-a.e.) if the set of points for which the property doesn’t
hold has µ measure zero.
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Definition 1.13. Let X,Y be sets, µ be a measure on X and let f : X → Y . The
push forward of µ under f , written f#µ is defined by

f#µ(S) = µ(f−1(S)).

Definition 1.14. The Lebesgue measure on Rn, denoted Ln, is defined using the
Carathéodory construction with F the set of cubes and ζ(Q) = vol(Q). Its measur-
able sets are called the Lebesgue measurable subsets of Rn.

The following lemma is very useful.

Lemma 1.15. Let µ be a finite measure on a set X and let S be a set of µ-measurable
subsets of X. There exists disjoint Si ∈ S such that any S ∈ S with

S ⊂ X \
⋃
i∈N

Si

satisfies µ(S) = 0.
In particular, if each µ-measurable subset of X of positive measure contains an el-

ement of S of positive measure then we can decompose almost all of X into countably
many disjoint elements of S.

Proof. We find the Si by induction. First let S1 ⊂ S be countable and disjoint such
that

µ(∪S1) ≥ sup{µ(∪S ′) : S ′ ⊂ S countable and disjoint} − 1/1.

Now let M2 be the set of all S ′ ⊂ S that are countable, disjoint and disjoint from
∪S1. Let S2 ∈ M2 be such that

µ(∪S2) ≥ sup{µ(∪S ′) : S ′ ∈ M2} − 1/2.

Inductively, given countable, disjoint S1, . . . ,Si−1 such that each Sj and Sk are
disjoint for k < j, let Mi be the set of all S ′ ⊂ S that are countable, disjoint and
disjoint from S1 ∪ . . . ∪ Si−1. Let Si ∈ Mi be such that

µ(∪Si) ≥ sup{µ(∪S ′) : S ′ ∈ Mi} − 1/i.

We claim that any S ∈ S with

S ⊂ X \
⋃
i∈N

⋃
Si

satisfies µ(S) = 0. If not, let i ∈ N be such that 1/i < µ(S). Then T := Si ∪ {S} ∈
Mi and

µ(∪T ) > sup{µ(∪S ′) : S ′ ∈ Mi} − 1/i+ 1/i,

a contradiction. □

1.1. Exercises.

Exercise 1.1. Usually in measure theory, a measure is defined as a countably ad-
ditive function defined on a σ-algebra. However, using our definition is simply a
convenience rather than a restriction.

Indeed, suppose µ is a countably additive function defined on a σ-algebra Σ of X
with µ(∅) = 0. Show that it can be extended to the power set of X by

µ(A) = inf{µ(B) : A ⊂ B ∈ Σ}
and that any B ∈ Σ is µ-measurable. What about

µ(A) = sup{µ(B) : A ⊃ B ∈ Σ}?



7

Conversely, any measure is countably additive when restricted to any σ-algebra
of measurable sets.

Exercise 1.2. Let Ω be a set of subsets of a set X. Show that Σ(Ω) is a σ-algebra.
Note that it is the smallest σ-algebra of X containing Ω.

Exercise 1.3. Show that the following sets are Borel subsets of R: Q, [0, 1), the set
of points in [0, 1] whose first decimal is even.

Let f : [0, 1] → [0, 1]. Show that the set of points where f is continuous is a Borel
set. What about the set of points where f is differentiable?

Exercise 1.4. Let X be a set and x ∈ X. The Dirac measure at x is defined as
δx(A) = 1 if x ∈ A, δx(A) = 0 otherwise. Show that δx is a measure on X. What
are its measurable sets?

Define the counting measure on X to be the cardinality (finite or ∞) of any subset
of X. Show that this is a measure. What are its measurable sets?

Exercise 1.5. For (X, d) a metric space and s ≥ 0 the s-dimensional Hausdorff
measure on X, denoted Hs, is defined using the Carathéodory construction with F
the set of all sets and ζ(S) = diam(S)s.

(1) Show that Ln and Hn are non-zero, translation invariant and n-homogenous
measures. That is, for any A ⊂ Rn, x ∈ Rn and t > 0, Ln(A + x) = Ln(A)
and Ln(tA) = tnLn(A) (and similarly for Hn).

(2) On Rn show that there exists a C > 0 such that Hn/C ≤ Ln ≤ CHn.
(3) Let f : X → Y be an L-Lipschitz function between two metric spaces. Show

that for any s ≥ 0 and A ⊂ X,

Hs(f(A)) ≤ LsHs(A).

(4) For any metric space X, show that H0 is the counting measure on X.
(5) For 0 ≤ s < t < ∞, suppose that Hs(A) < ∞. Show that Ht(A) = 0.

Hence there exists a single 0 ≤ s ≤ ∞ for which Ht(A) = 0 for all t > s
and Ht(A) = ∞ for all t < s. This t is called the Hausdorff dimension of A,
denoted dimHA.

Exercise 1.6. The Cantor set K ⊂ [0, 1] is defined as follows. Let K0 = [0, 1] and
for each i ∈ N let Ki be obtained from deleting the “middle third” open interval
from each of the intervals in Ki−1. That is, K1 = [0, 1/3] ∪ [2/3, 1],

K2 = [0, 1/9] ∪ [2/9, 1/3] ∪ [2/3, 7/9] ∪ [8/9, 1],

etc. Define K =
⋂

i∈NKi. Note that K is compact and hence Borel.

(1) Show that K is uncountable.
(2) Let s = log 2/ log 3. Show that 0 < Hs(K) <∞.

In particular, K is an uncountable subset of R with L1(K) = 0.

Exercise 1.7. Give an examples of S ⊂ R2 with dimH S = 1 for which H1|S is:

(1) finite,
(2) σ-finite but not finite,
(3) not σ-finite.

Exercise 1.8. The fundamental properties of measures are those given in Theo-
rem 1.6, in particular countable additivity. It is necessary for us to only require this
to be true for measurable sets, as can be seen from the existence of non-measurable
sets.
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Define a Vitali set as follows. Consider the equivalence relation ∼ on R defined
by x ∼ y iff x−y ∈ Q. By the density of Q in R, each equivalence class Vx intersects
[0, 1]. Therefore, by the axiom of choice(!), we may construct a set V ⊂ [0, 1]
consisting of exactly one member of each equivalence class.

Show:

(1) If p ̸= q are rational then p+ V and q + V are disjoint.
(2) [0, 1] ⊂

⋃
{q + V : q ∈ Q ∩ [−1, 1]} ⊂ [−1, 2].

(3) Show that L1(V) ̸= 0.
(4) Deduce that V is not Lebesgue measurable.

Exercise 1.9. Show that the two extensions given in Exercise 1.1 may not agree.
For example, after extending Lebesgue measure (restricted to the Borel sets), what
are the values of a Vitali set?

Exercise 1.10. Let µ be a finite Borel measure on a metric space X. Prove that
for every Borel B ⊂ X,

(1.2) µ(B) = sup{µ(C) : C ⊂ B closed}

and

(1.3) µ(B) = inf{µ(U) : U ⊃ B open}.

Property (1.2) is called inner regularity by closed sets and (1.3) is called outer reg-
ularity by open sets.

Hint: observe that it suffices to show that all Borel sets satisfy (1.2). Show that
the set

{B ⊂ X : B and X \B satisfy (1.2)}
is a σ-algebra that contains all closed subsets of X.

Show that a σ-finite µ is inner regular by closed sets. Show that a σ-finite µ is
outer regular by open sets if there exist open sets Ui ⊂ X with µ(Ui) < ∞ for all
i ∈ N and X =

⋃
i∈N Ui. Give an example of a σ-finite µ that is not outer regular

by open sets.

Exercise 1.11. Let X be a complete and separable metric space. Show that any
finite Borel measure on X is a Radon measure.

Hint: a metric space is compact if and only if it is complete and totally bounded.

2. Integration

Definition 2.1. Let µ be a measure on a set X. A simple function is any function
of the form

m∑
i=1

aiχAi ,

where each ai ∈ R and the Ai ⊂ X are disjoint µ-measurable sets. We treat 0·∞ = 0.

Definition 2.2. Let µ be a measure on a set X and let f : X → R+. The (lower)
integral of f with respect to µ is∫

f dµ := sup

{
m∑
i=1

aiµ(Ai) : s =
m∑
i=1

aiχAi ≤ f, s simple

}
.
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Definition 2.3. Let µ be a measure on a set X. A function f : X → R is µ-
measurable if f−1((a,∞)) is µ-measurable for every a ∈ R.

For f : X → R measurable, let f+ = max{f, 0} and f− = max{−f, 0} (both
µ-measurable), so that f = f+ − f− and |f | = f+ + f−. If one of

∫
X f+ dµ and∫

X f− dµ are finite, we say that f is µ-integrable and we define the integral of f with
respect to µ to be ∫

X
f dµ =

∫
X
f+ dµ−

∫
X
f− dµ.

If only
∫
X f− dµ < ∞ (respectively

∫
X f+ dµ < ∞) we write

∫
X f dµ = ∞ (respec-

tively
∫
X f dµ = −∞).

Let X be a topological space. A function f : X → R is a Borel function if
f−1((a,∞)) is a Borel set for every a ∈ R.

There are some simple properties of the integral to check, such as linearity and
monotonicity. See Exercise 2.3.

Linear combinations of measurable functions are measurable, as are limits of mea-
surable functions. See Exercise 2.2.

Theorem 2.4 (Fatou’s lemma). Let µ be a measure on a set X and fk : X → [0,∞]
µ-measurable. Then ∫

X
lim inf
k→∞

fk dµ ≤ lim inf
k→∞

∫
X
fk dµ.

Proof. Let

s =
m∑
i=1

aiχAi

be a simple function with
s ≤ lim inf fk.

for each x ∈ Ai and each 1 ≤ i ≤ m and let 0 < t < 1. For each 1 ≤ i ≤ m, the sets

Gk,i := {x ∈ Ai : fk(x) ≥ tai for all j ≥ k}
monotonically increase to Ai as k increases. Therefore∫

fk dµ ≥
m∑
i=1

taiµ(Gk,i) →
n∑

i=1

taiµ(Ai).

and hence
n∑

i=1

taiµ(Ai) ≤ lim inf
k→∞

∫
fk dµ.

Since 0 < t < 1 is arbitrary, the conclusion follows. □

Remark 2.5 (Reverse Fatou). Suppose that there exists g ≥ 0 with
∫
g dµ <∞ and

fk ≤ g for all k. Then

lim sup
k→∞

fk dµ ≥ lim sup
k→∞

∫
X
fk dµ.

Indeed, this follows by applying Fatou’s lemma to g − fk.

Theorem 2.6 (Monotone convergence theorem). Let µ be a measure on a set X
and fk : X → [0,∞] µ-measurable. Suppose that for every x ∈ X and all k ∈ N,
fk+1(x) ≥ fk(x). Then

lim
k→∞

∫
fk dµ =

∫
lim
k→∞

fk dµ.
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Proof. The monotonicity of the integral gives ≤ whilst Fatou’s lemma gives ≥. □

Theorem 2.7. Let µ be a measure on X and fn : X → R µ-measurable such that
fn → f pointwise. Suppose that there exists measurable g : X → [0,∞] with

∫
g dµ <

∞ such that |fn(x)| ≤ g(x) for all x ∈ X. Then∫
fn dµ→

∫
f dµ.

Proof. Observe that for all n ∈ N, |f − fn| ≤ 2g and that lim sup |f − fn| = 0. Then
by the reverse Fatou lemma,∣∣∣∣∫ f dµ−

∫
fn dµ

∣∣∣∣ ≤ ∫ |f − fn| dµ→ 0.

□

2.1. Exercises.

Exercise 2.1. For µ a measure on a setX, let f : X → R be measurable, respectively
Borel. Show that the pre-image of any Borel B ⊂ R is µ-measurable, respectively
Borel. Compare this to the definition of a continuous function.

Exercise 2.2. Let µ be a measure on X and for each i ∈ N let fi : X → R be
µ-measurable. Show that the functions

lim sup
i→∞

fi and lim inf
i→∞

fi

are µ-measurable.
Show that a linear combination of µ-measurable functions is µ-measurable. Show

that a countable (pointwise) sum of µ-measurable functions is µ-measurable.

Exercise 2.3. There are some simple properties of the integral to check:

(1) If f ≤ g µ-a.e. then ∫
fdµ ≤

∫
g dµ;

(2) The integral with respect to µ is a linear operator;
(3) If S ⊂ X is µ-measurable then∫

X
f dµ =

∫
S
f dµ+

∫
X\S

f dµ;

(4) |
∫
f dµ| ≤

∫
|f |dµ;

(5) etc...

Exercise 2.4. Show that f : X → R is µ-measurable if and only if

µ(E) ≥ µ(E ∩ f−1((−∞, a))) + µ(E ∩ f−1((b,∞)))

for every E ⊂ X and a < b ∈ Q.

Exercise 2.5. State and prove a reverse monotone convergence theorem for mono-
tonically decreasing sequences of functions.

Exercise 2.6. Show that the Fatou lemma is false if the functions are not uniformly
bounded below.

Show that the reverse Fatou lemma is false if the sequence is not bounded above
by an integrable g.

Show that the monotone convergence theorem is false if the sequence does not
monotonically increase.
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Exercise 2.7. Let X,Y be sets, µ a measure on X and f : X → Y . Show that f#µ
is a measure on Y . If X,Y are topological spaces and µ, f are Borel, show that f#µ
is a Borel measure on Y .

3. Some standard theorems

Theorem 3.1 (Egorov’s theorem). Let µ be a finite measure on a set X and
fn : X → R a sequence of µ-measurable functions such that fn → f pointwise µ-
a.e. Then for every ϵ > 0 there exists a measurable G ⊂ X with µ(X \G) < ϵ and
fn → f uniformly on G.

Proof. Fix ϵ > 0, k ∈ N and for each n ∈ N let

Bn,k = {x ∈ X : |fn(x)− f(x)| > 1/k for some m ≥ n}.

By assumption, the Bn,k are measurable sets that monotonically decrease to a µ-null

set as n→ ∞. Therefore, there exists n ∈ N such that µ(Bn,k) < ϵ2−k. Let

Gk = X \Bn,k and G =
⋂
k∈N

Gk.

Then µ(X \ G) < ϵ and, for each x ∈ G and each k ∈ N, G ⊂ Gk, so there exists
n ∈ N such that

|f(x)− fm(x)| < 1/k

for all m ≥ n. That is, fm → f uniformly on G, as required. □

Theorem 3.2 (Lusin’s theorem). Let µ be a finite Borel measure on a metric space
X and let f : X → R be µ-measurable. Then for every ϵ > 0 there exists a closed
C ⊂ X with µ(X \ C) < ϵ such that f |C is continuous.

Proof. Fix ϵ > 0 and for each i ∈ Z let

Xi = f−1([iϵ, (i+ 1)ϵ)),

a collection of disjoint Borel sets which cover X. Since µ(X) < ∞, there exists
n ∈ N such that

µ

(
X \

n⋃
i=1

Xi

)
< ϵ.

Since µ is Borel, for each 1 ≤ i ≤ n there exists a closed Ci ⊂ Xi with µ(Xi \Ci) <
ϵ/n.

For a moment fix 1 ≤ i ≤ n and let

D =
⋃

1≤j ̸=i≤n

Cj .

Since D is closed, the sets B(D, δ) monotonically decrease to D as δ → 0, which is
disjoint from Ci. Therefore there exists δi > 0 such that

C ′
i := Ci \B(D, δi)

satisfies µ(Ci \ C ′
i) < ϵ/n. Note that C ′

i is closed.
Let δ := min1≤i≤n δi > 0 and Cϵ =

⋃n
i=1C

′
i, a closed set. For any 1 ≤ i ̸= j ≤ n

and x ∈ C ′
i and y ∈ C ′

j , d(x, y) ≥ δ. Therefore, if x, y ∈ Cϵ with d(x, y) < δ,

|f(x)−f(y)| < ϵ. Repeat this for each k ∈ N with ϵk = 2−kϵ/3 and let C =
⋂

k∈NCϵk ,
so that µ(X \ C) < ϵ. Then f is continuous on C. □
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Definition 3.3. Let µ, ν be measures on a set X. We say ν is absolutely continuous
with respect to µ, written ν ≪ µ, if for every S ⊂ X, µ(S) = 0 =⇒ ν(S) = 0. We
say that ν is singular with respect to µ, written ν ⊥ µ if there exists A ⊂ X with
µ(X \A) = 0 = ν(A).

Let µ be a measure on a set X and let f : X → R+. The set valued function

ν(S) =

∫
S
f dµ

defines a measure on X. Note also that ν ≪ µ. The Radon-Nikodym theorem
provides the converse to this statement.

Theorem 3.4 (Radon–Nikodym). Let µ, ν be finite measures on a set X such that
ν ≪ µ. There exists a µ and ν-measurable f : X → R+ such that

ν(S) =

∫
S
f dµ

for all µ and ν-measurable S ⊂ X. The function f is called the Radon-Nikodym
derivative of ν with respect to µ.

Proof. Let F be the set of all µ and ν-measurable f : X → R+ such that∫
S
f dµ ≤ ν(S)

for all µ and ν-measurable S ⊂ X. Note that 0 ∈ F and

(3.1) f, g ∈ F ⇒ max{f, g} ∈ F .
Let

M = sup

{∫
f dµ : f ∈ F

}
,

so that 0 ≤M ≤ ν(X) <∞, and let fi ∈ F be such that∫
fi dµ→M.

Eq. (3.1) implies that we may suppose the fi monotonically increase. Let f : X → R+

be the pointwise limit of the fi. Then f is µ and ν-measurable and, by the monotone
convergence theorem, f ∈ F and

∫
f dµ ≥M . Thus

(3.2)

∫
f dµ =M.

We claim that f satisfies the conclusion of the proposition. Indeed, suppose that
B ⊂ X is µ-measurable but

ν(B) >

∫
B
f dµ

and let ϵ > 0 be such that

(3.3) ν(B) >

∫
B
f + ϵdµ.

Let S be the collection of all µ and ν-measurable S ⊂ B such that

ν(S) ≤
∫
S
f + ϵdµ.

We claim that there exists a µ and ν-measurable G ⊂ B of positive µ-measure such
that each µ and ν-measurable G′ ⊂ G of positive µ-measure is not contained in S.
Indeed, if not, then each G ⊂ B of positive µ-measure contains an element of S of
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positive µ-measure. Thus Lemma 1.15 gives a countable disjoint decomposition of
µ-almost all of B into elements of S. Since ν ≪ µ this implies

ν(B) ≤
∫
B
f + ϵdµ,

contradicting (3.3).
Note that f + ϵG ∈ F . Indeed, if S ⊂ X is µ-measurable,∫

S
f + ϵG dµ =

∫
S\G

f +

∫
S∩G

f + ϵdµ

≤ ν(S \G) + ν(S ∩G)
= ν(S).

On the other hand, since µ(G) > 0,∫
f + ϵG dµ =M + ϵµ(G) > M,

contradicting the definition of M . □

Theorem 3.5 (Lebesgue decomposition theorem). Let µ, ν be finite measures on a
set X. There exists a ν-measurable A ⊂ X with µ(X \ A) = 0 such that, for all
S ⊂ A, µ(S) = 0 ⇒ ν(S) = 0. That is, ν = νac + ν⊥ with νac ≪ µ and ν⊥ ⊥ µ.

Proof. Let S be the set of all ν-measurable S ⊂ X with µ(S) = 0. By Lemma 1.15,
there exists Si ∈ S such that each S ∈ S with

S ⊂ A := X \
⋃
i∈N

Si

satisfies ν(S) = 0. Since µ(X \A) = 0, this is the required decomposition. □

3.1. Exercises.

Exercise 3.1. Let µ be a Borel measure on a metric spaceX, f : X → R µ-integrable
and ϵ > 0.

(1) Show that there exists a simple function s such that∫
X
|f − s|dµ < ϵ.

(2) If f is positive show that we may require 0 ≤ s ≤ f in the previous point.
(3) Show that if µ is finite, there exists g ∈ C(X) with∫

X
|f − g|dµ < ϵ.

(4) Show that the previous point may fail if µ is only σ-finite.

Exercise 3.2. Prove the following variant of Lusin’s theorem for the case that µ is
not finite but f is µ-integrable: for every ϵ > 0 there exists a closed C ⊂ X with∫

X\C
|f | dµ < ϵ

such that f |C is continuous.

Exercise 3.3. Let µ, ν be measures on a set X. Show that if A ⊂ X is µ + ν
measurable then it is also µ-measurable.
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Exercise 3.4. Prove the Radon-Nikodym and Lebesgue decomposition theorems
for σ-finite measures.

Exercise 3.5. Let µ, ν be finite measures on a set X and suppose ν ≪ µ. For any
µ, ν-measurable g : X → R+ show that∫

g dν =

∫
gf dν,

where f is the Radon-Nikodym derivative of ν with respect to µ.

Exercise 3.6. For a measure µ on a set X, we say a function f : X → Rn is µ-
measurable if each component of f is µ-measurable and define the integral of f
component by component.

An n-dimensional vector valued measure is a function

ν : {A : A ⊂ X} → Rn

for which there exists a measure µ on X and a µ-measurable f : X → Sn−1 such
that

ν(A) =

∫
A
f dµ

for each A ⊂ X.

(1) Show that if

ν =

∫
f dµ =

∫
f ′ dµ′

are two representations of a vector valued measure then µ = µ′ (when re-
stricted to the set of µ-measurable sets), and hence f = f ′ µ-a.e. We denote
this unique measure by |ν|. It is called the total variation of ν.

(2) Show that the set of all vector valued measures form a normed vector space
when equipped with

∥ν∥ = |ν|(X).

(3) Show that this space is complete.

A signed measure is a 1-dimensional vector valued measure.

Exercise 3.7. Let Σ be a σ-algebra on X. The standard definition of a signed
measure on Σ is a countably additive function

µ : Σ → R.
The Hahn decomposition theorem states that there exist disjoint P,N ∈ Σ with
X = P ∪N such that:

• For every S ∈ Σ with S ⊂ P , µ(P ) ≥ 0 and
• For every S ∈ Σ with S ⊂ N , µ(P ) ≤ 0.

That is, µ|P and −µ|N are (positive) measures.
Use the Lebesgue decomposition and Radon–Nikodym theorems to show that the

two definitions of a signed measure agree.

4. The Daniell integral

Let µ be a measure on a set X and let L be a set of real valued µ-measurable
functions on X. The formula

T (f) :=

∫
X
f dµ

defines an operator on L. Moreover, it has the following two properties:
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• T is monotonic: for all f, g ∈ L with g ≤ f , T (g) ≤ f ;
• T is continuous with respect to monotone convergence: if fi ∈ C(X) mono-
tonically increase to f then T (fi) → T (f).

In the next theorem we see that these two properties completely characterise the
Lebesgue integral. That is, we could equivalently develop a theory of integration
(and hence measure) by beginning with operators on sets of functions.

Definition 4.1. Let X be a set. A lattice of functions on X is a non-empty set L
of functions X → R which satisfies the following conditions: for any c ∈ R+ and
any f, g ∈ L, f + g, cf , inf{f, g} and inf{f, c} all belong to L and if g ≤ f then
f − g ∈ L too. Note that any vector space of functions closed under inf is a lattice.

If L is a lattice we let
L+ = {f ∈ L : f ≥ 0}.

We say a T : L→ R is

(1) linear if, for all f, g ∈ L and a, b ∈ R+,

T (af + bg) = aT (f) + bT (g);

(2) monotonic if, for all f, g ∈ L with g ≤ f ,

T (g) ≤ T (f);

(3) continuous with respect to monotone convergence if, for all fi ∈ L that mono-
tonically increase to f ,

T (fi) → T (f).

(4) bounded if for every f ∈ L,

sup{T (g) : 0 ≤ g ≤ f} <∞.

A T satisfying Items 1 to 3 is called a monotone Daniell integral (it necessarily
satisfies Item 4). A T satisfying Items 1, 3 and 4 is called a Daniell integral.

Theorem 4.2. Let L be a lattice on X and let T : L → R be a monotone Daniell
integral. Then there exists a measure µ on X for which each f ∈ L+ is µ-measurable
such that

(4.1) T (f) =

∫
f dµ

for all f ∈ L.

Proof. First note that, for any f ∈ L+,

T (f) ≥ T (0 · f) = 0.

For A ⊂ X we say that a sequence fi ∈ L+ suits A if the fi monotonically increase
and

lim
i→∞

fi(x) ≥ 1 ∀x ∈ A.

Define

µ(A) = inf

{
lim
i→∞

T (fi) : fi suits A

}
.

Then µ is a measure on X. Indeed, µ(∅) = 0 and µ is monotonic. If Aj ⊂ X for

each j ∈ N and f ji ∈ L+ suit Aj then

gi :=

i∑
j=1

f ji
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suits ∪jAj and

T (gi) =

i∑
j=1

T (f ji ) ≤
∑
j∈N

lim
i→∞

T (f ji ) =
∑
j∈N

µ(Aj).

Next we show that each f ∈ L+ is µ-measurable. By Exercise 2.4, it suffices to
show, for every E ⊂ X and 0 ≤ a < b ∈ R that, for

A := f−1((−∞, a)), B := f−1((b,∞)),

we have

µ(E) ≥ µ(E ∩A) + µ(E ∩B).

Suppose gi suit E and let

h =
inf{f, b} − inf{f, a}

b− a
, ki = inf{gi, h}.

Then 0 ≤ ki+1 − ki ≤ gi+1 − gi for all i and

h(x) = 1 whenever f(x) ≥ b, h(x) = 0 whenever f(x) ≤ a.

Then ki suit B and gi − ki suit A. Therefore

lim
i→∞

T (gi) = lim
i→∞

T (ki) + T (gi + ki) ≥ µ(B) + µ(A).

Finally we show that

(4.2) T (f) =

∫
f dµ f ∈ L+.

First suppose that A ⊂ X, fi suit A and g ∈ L+ satisfies g ≤ χA. Then hi =
inf{fi, g} monotonically increase to g and so

T (g) = lim
i→∞

T (hi) ≤ lim
i→∞

T (fi).

Consequently,

(4.3) T (g) ≤ µ(A).

Now fix f ∈ L+ and for each t ∈ R+ let ft = inf{f, t}. For a moment fix ϵ > 0.
Then, for each k ∈ N,
(4.4) 0 ≤ fkϵ(x)− f(k−1)ϵ(x) ≤ ϵ ∀x ∈ X,

(4.5) fkϵ(x)− f(k−1)ϵ(x) = ϵ whenever f(x) ≥ kϵ

and

(4.6) fkϵ(x)− f(k−1)ϵ(x) = 0 whenever f(x) ≤ (k − 1)ϵ.

Note that, for any k ∈ N, (fkϵ − f(k−1)ϵ)/ϵ suits

{x : f(x) ≥ kϵ}
and so

(4.7) T (fkϵ − f(k−1)ϵ) ≥ ϵµ({x : f(x) ≥ kϵ}).

By Eqs. (4.4) and (4.6) and Eq. (4.5) respectively,

ϵµ({x : f(x) ≥ kϵ}) ≥
∫
f(k+1)ϵ − fkϵ dµ

≥ ϵµ({x : f(x) ≥ (k + 1)ϵ}).(4.8)
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Finally by (4.3),

(4.9) ϵµ({x : f(x) ≥ (k + 1)ϵ}) ≥ T (f(k+2)ϵ − f(k+1)ϵ)

Combining Eqs. (4.7) to (4.9) gives

T (fkϵ − f(k−1)ϵ) ≥
∫
f(k+1)ϵ − fkϵ dµ ≥ T (f(k+2)ϵ − f(k+1)ϵ).

Summing from 1 to i gives

T (fiϵ) ≥
∫
f(i+1)ϵ − fϵ dµ ≥ T (f(i+2)ϵ − f2ϵ).

Since fiϵ monotonically increases to f ,

T (f) ≥
∫
f − fϵ dµ ≥ T (f − fϵ).

Therefore, since fϵ monotonically decreases to 0, f − fϵ increases to f and so this
gives (4.2).

Note that, if f ∈ L, then f+, f− ∈ L+ and so

T (f) = T (f+)− T (f−) =

∫
f+ dµ−

∫
f− dµ =

∫
f dµ.

□

Observation 4.3. For any measure µ satisfying the conclusion of Theorem 4.2, the
value of µ({f > t}), for f ∈ L+ and t > 0, is uniquely determined by the values of
T on L+.

Proof. For any t > 0 and 0 < h < t, observe that the functions

gh :=
inf{f, t+ h} − inf{f, t}

h

converge pointwise to the characteristic function of f−1((t,∞)) and are bounded
above by 2f . Therefore, by (4.1) and the dominated convergence theorem,

µ({x : f(x) > t}) = lim
h→0

h−1T (inf{f, t+ h} − inf{f, t}).

□

The Banach–Alaoglu theorem (see Exercise 4.8) motivates us to consider repre-
sentations of Borel measures by elements of the dual of a Banach space, namely
of C(X). To use Theorem 4.2, we must upgrade the pointwise convergence in the
hypotheses to uniform convergence in C(X). Recall that Cc(X) is the set of all
continuous functions on X with compact support, and that pointwise monotonic
convergence in Cc(X) implies uniform convergence (see Exercise 4.4). Therefore, for
any monotonic T ∈ Cc(X)′, Theorem 4.2 produces a measure µ that represents T .
If X is a metric space, then all compact sets are measurable with respect to µ. We
next show, on locally compact spaces, how to obtain a Borel measure.

Lemma 4.4. Let X be a locally compact metric space and suppose that τ is a finite
measure on X. There exists a unique Radon measure µ on X that agrees with τ on
K(X).

Proof. Let U be the set of open subsets of X. For each U ∈ U define

ν(U) = sup{τ(K) : K ⊂ U compact}.
Since τ is monotone, for any K ∈ K(X), ν(Ko) ≤ τ(K), for Ko the interior of K.
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Since X is locally compact, for any U ∈ U and K ∈ K(X) with K ⊂ U , there
exists V ∈ U with V ∈ K(X) and

K ⊂ V ⊂ V ⊂ U.

Consequently,

(4.10) ν(U) = sup{ν(V ) : V ∈ U , V ⊂ U, V ∈ K(X)}.

Also, since τ is a measure and X is a metric space,

(4.11) τ(K) = inf{τ(S) : K ⊂ So, S ∈ K(X)}.

For each A ⊂ X define

µ(A) = inf{ν(U) : U ⊃ A open}.

Note that both ν and µ are monotone and give value 0 to the empty set. To see
that µ is a measure, let Ai ⊂ X and let Ui ⊃ Ai be open. We must show that

µ

(⋃
i∈N

Ai

)
≤
∑
i∈N

µ(Ai).

It suffices to show that

ν

(⋃
i∈N

Ui

)
≤
∑
i∈N

ν(Ui).

By (4.10), for any ϵ > 0, there exists V ⊂ ∪iUi with compact closure such that

ν(V ) ≥ ν

(⋃
i∈N

Ui

)
− ϵ

Since V has compact closure, it is contained in the union of finitely many Ui. There-
fore, it suffices to show that ν is finitely sub-additive.

Let U, V ∈ U and K ⊂ U ∪ V be compact. Let W = U ∩ V and

KU := {x ∈ K : d(x, U \W ) ≤ d(x, V \W )}

and

KV := {x ∈ K : d(x, V \W ) ≤ d(x, U \W )}.
ThenKU ,KV are closed subsets ofK withK = KU∪KV andKU ⊂ U andKV ⊂ V .
Since τ is finitely sub-additive,

τ(K) ≤ τ(KU ) + τ(KV )

and so

ν(U ∪ V ) ≤ ν(U) + ν(V ).

Therefore, ν is finitely sub-additive by induction. As shown above, this implies that
µ is a measure.

To see that µ is a Borel measure, if A,B ⊂ X are separated, then there exist
separated open sets U ⊃ A, V ⊃ B. Since τ is finitely additive, ν(U ∩ V ) = ν(U) +
ν(V ) and so µ is additive on separated sets. By construction, µ is Borel regular.
Also, (4.10) shows that open sets are inner regular by compact sets. Combining this
with outer regularity by open sets shows that µ is a Radon measure.

To see that µ agrees with τ on K(X), note that for any K ∈ K(X) and U ∈ U
with K ⊂ U ,

τ(K) ≤ ν(U) = µ(U)
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and so τ(K) ≤ µ(K). For the other inequality,

µ(K) = inf{ν(U) : U ⊃ K open}
≤ inf{ν(So) : S ∈ K(X), K ⊂ So}
≤ inf{τ(S) : S ∈ K(X),K ⊂ So} = τ(K)

by (4.11).
Finally, if µ1, µ2 are two Radon measures that agree with τ on K(X), then for

any open U ⊂ X,

µ1(U) = sup{µ1(K) : K ⊂ U, K ∈ K(X)}
= sup{µ2(K) : K ⊂ U, K ∈ K(X)} = µ2(U).

Since µ1, µ2 are both Borel regular, they must agree. □

Theorem 4.5 (Riesz representation theorem). Let X be a locally compact metric
space and let T ∈ Cc(X)′ be monotone. Then there exists a unique Radon measure
µ such that

(4.12) T (f) =

∫
f dµ ∀f ∈ Cc(X).

Proof. Observe that T is a monotone Daniell integral on L = Cc(X). By Theo-
rem 4.2, there exists a measure τ on X for which (4.12) holds with µ replaced by τ .
By Lemma 4.4, there exists a Radon measure µ that agrees with τ on K(X). For
any f ∈ Cc(X), the value of ∫

f dτ

is determined by the value of τ on compact sets, and so∫
f dτ =

∫
f dµ,

so that (4.12) holds. Observation 4.3 implies that, on a locally compact space, the
measure of any compact set is uniquely determined by (4.12). Thus any Radon
measure satisfying (4.12) is uniquely determined. □

The Riesz representation theorem allows us to identify the set of finite Radon
measures on a locally compact spaceX with the set of monotonic elements of C0(X)′.
For B a Banach space, a sequence Tn ∈ B′ weak* converges to T ∈ B′ if Tn(x) →
T (x) for every x ∈ B. In C0(X)′, this translates to the following.

Definition 4.6. Let X be a locally compact metric space. A sequence µn of finite
Radon measures on X weak* converges to a finite Radon measure µ if, for every
f ∈ Cc(X), ∫

X
f dµn →

∫
X
f dµ.

By the Banach-Alaoglu theorem (see Exercise 4.8), the unit ball of B′ is weak*
compact. Since the weak* limit of a sequence of monotonic operators on C0(X) is
monotonic, we have the following.

Theorem 4.7. Let X be a locally compact metric space and µn a sequence of Radon
measures with uniformly bounded total measures. There exists a finite Radon mea-
sure µ on X and subsequence µnk

that weak* converges to µ.
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4.1. Exercises.

Exercise 4.1. Let L be a lattice of functions on X. For any f ∈ L show that
f+, f− ∈ L+

Exercise 4.2. Let L be a lattice on X and T a monotone Daniell integral on L.
Give an example to show that there may be more than one measure satisfying (4.1)
(recall Exercise 1.9). Compare to Observation 4.3.

Exercise 4.3. Let L be a lattice on X and T a Daniell integral on L. Define T+, T−

on L+ by

T+(f) = sup{T (g) : g ∈ L+, g ≤ f}

and

T−(f) = − inf{T (g) : g ∈ L+ g ≤ f}.

(1) There show that T+, T− are monotone Daniell integrals on L.
(2) If f, g ∈ L+ with g ≤ f then f ≥ f − g ∈ L+ and so

T (g)− T−(f) ≤ T (g) + T (f − g) ≤ T (g) + T+(f).

(3) Deduce that T = T+ − T−.

Exercise 4.4. Let K be a compact metric space and suppose that fi ∈ C(K)
monotonically increase to f ∈ C(K). Show that fi → f uniformly.

Exercise 4.5. Let c be the set of all f : N → R such that limj f(xj) exists and
define T : c → R by T (f) = limj f(xj). Let C be the set of all bounded f : N → R.
Equip c and C with the supremum norm.

(1) Observe that T is linear and continuous on c and hence can be extended by
the Hahn-Banach theorem to a linear and continuous element of C. (Such
an extension is called a Banach limit.)

(2) Show that any finite Borel measure on N is a convergent sum of Dirac masses.
(3) Hence show that there is no Borel measure µ on R such that Tµ = T .

Exercise 4.6. Adapt the previous exercise to show that the Riesz representation
theorem is false in non locally compact metric spaces.

Exercise 4.7. Let X be a metric space. Show that any T ∈ Cc(X)′ is a Daniell
integral.

(1) Let let T+, T− ∈ Cc(X)′+ be obtained from Exercise 4.3.
(2) Show that ∥T∥ = ∥T+∥+ ∥T−∥.
(3) By Theorem 4.5, any T ∈ C0(X) can be identified with two measures µ+

and µ− and hence with a signed measure (recall Exercise 3.6). Show that
this identification is an isometric isomorphism.

Exercise 4.8. Let B be a separable Banach space and D a countable dense subset
of B. Suppose that Tn ∈ B′ satisfy ∥Tn∥ ≤M for some M > 0.

(1) Show that there exists a subsequence Tnj and a T ∈ B′ such that Tnj (d) →
T (d) for each d ∈ D.

(2) Deduce that, for any x ∈ B, Tnj (x) → T (x).

That is, closed and bounded subsets of B′ are weak* compact.
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5. Fubini’s theorem

Definition 5.1. Let µ, ν be measures on sets X,Y respectively and define the set
of rectangles to be

R = {A ⊂ X : A µ-measurable} ⊗ {B ⊂ Y : B ν-measurable}.
The product measure µ× ν on X × Y is defined by

µ× ν(S) = inf
∑
i∈N

µ(Ai)ν(Bi),

where the infimum is taken over all countable collections of rectangles Ai ×Bi ∈ R
with

S ⊂
⋃
i∈N

Ai ×Bi.

This is a measure, see Exercise 5.1.

Lemma 5.2. Let X,Y be sets and µ, ν measures on X,Y respectively. Then µ× ν
is equivalently defined by the formula

µ× ν(S) = inf
∑
i∈N

µ(Ai)ν(Bi),

where the infimum is taken over all disjoint countable collections of rectangles Ai ×
Bi ∈ R with

S ⊂
⋃
i∈N

Ai ×Bi.

Proof. If A,C are µ-measurable and B,D are ν-measurable then

(A×B) \ (C ×D) = [(A \ C)×B] ∪ [(A ∩ C)× (B \D)]

:= A1 ×B1 ∪A2 ×B2

is a decomposition into disjoint rectangles. Since A,C and B,D are µ and ν mea-
surable respectively,

µ(A1)ν(B1) + µ(A2)ν(B2) = [µ(A)− µ(A ∩ C)]ν(B) + µ(A ∩ C)[ν(B)− ν(B ∩D)]

= µ(A)ν(B)− µ(A ∩ C)ν(B ∩D)

≤ µ(A)ν(B).

Thus the two formulae agree. □

Theorem 5.3 (Fubini’s theorem). Let X,Y be sets and µ, ν σ-finite measures on
X,Y respectively.

(1) If A is µ-measurable and B is ν-measurable then A×B is µ× ν-measurable
and

µ× ν(A×B) = µ(A)ν(B).

(2) If S is µ× ν-measurable then

Sy := {x ∈ X : (x, y) ∈ S}
is µ-measurable for ν-a.e. y ∈ Y , y 7→ µ(Sy) is ν-measurable;

Sx := {y ∈ Y : (x, y) ∈ S}
is ν-measurable for µ-a.e. x ∈ X, x 7→ ν(Sx) is µ-measurable; and

µ× ν(S) =

∫
Y
µ(Sy) dν(y) =

∫
X
ν(Sx) dµ(x).
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(3) If f : X ×Y → R+ is µ× ν-measurable or f : X ×Y → R is µ× ν integrable
then∫

X×Y
f dµ× ν =

∫
X

∫
Y
f dν(y) dµ(x) =

∫
Y

∫
X
f dµ(x) dν(y).

Proof. Note that (3) follows from (2) by the monotone convergence theorem. We
prove the theorem for finite µ, ν.

To begin, let

U :=

{⋃
i∈N

Ri : Ri ∈ R pairwise disjoint

}
.

Let P be the set of S ⊂ X × Y such that y 7→ µ(Sy) is ν-measurable and for any
S ∈ P define

ρ(S) :=

∫
Y
µ(Sy) dν.

Observe that ρ(S) is monotonic in S.
If S = A × B ∈ R then y 7→ µ(Sy) = µ(A)χB is ν-measurable and ρ(S) =

µ(A)ν(B). If U ∈ U with

U =
⋃
i∈N

Ai ×Bi

a disjoint union, then

y 7→ µ(Uy) =
∑
i∈N

µ(Ai)χBi

is a countable sum of ν-measurable functions and so U ∈ P. Moreover,

(5.1) ρ(U) =

∫
Y
µ(Uy) dν(y) =

∑
i∈N

µ(Ai)ν(Bi).

Thus, for any S ⊂ X × Y ,

(5.2) µ× ν(S) = inf{ρ(U) : S ⊂ U ∈ U}.
To prove (1), let A be µ-measurable and B be ν-measurable. By definition,

ρ(A × B) = µ(A)ν(B) and, since ρ is monotonic, ρ(A × B) ≤ ρ(U) whenever
A×B ⊂ U ∈ U . Thus, by (5.2),

µ× ν(A×B) = µ(A)ν(B).

Let E ⊂ X × Y and E ⊂ U ∈ U . Observe

U ∩ (A×B) and U \ (A×B)

are disjoint members of U . Therefore, by (5.1) and (5.2),

ρ(U) = ρ(U ∩ (A×B)) + ρ(V \ (A×B))

≥ µ× ν(E ∩ (A×B)) + µ× ν(E \ (A×B)).

When taking the infimum over all such U , the left hand side converges to µ× ν(E),
and so A × B is µ × ν-measurable. This also implies that all elements of U are
measurable.

Let S ⊂ X × Y and suppose that U1, U2, . . . ∈ U are such that ρ(Ui) → µ× ν(S).
Since the intersection of any two rectangles is a rectangle,

Vi := Ui ∩ Ui−1 ∩ . . . U1 ∈ U
for each i ∈ N. Moreover, ρ(Vi) monotonically decreases to µ × ν(S). Let W =⋂

i∈N Vi ⊃ S. Note that, for each y ∈ Y , µ(V y
i ) monotonically decreases to µ(W y),
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so that W ∈ P. Since µ, ν are finite, the monotone convergence theorem implies
that ρ(Vi) → ρ(W ) and hence µ × ν(S) = ρ(W ). Since µ × ν(W ) ≥ µ × ν(S), the
monotonicity of ρ implies µ× ν(W ) = ρ(W ).

To prove (2), if S is µ×ν-measurable, then µ×ν(W \S) = 0. By (5.2) there exists
Z ⊃ W \ U with ρ(Z) = 0. That is, µ(W y) = µ(Sy) for ν-a.e. y ∈ Y , and hence
the first conclusion of (2). Moreover, ρ(S) = ρ(W ) = µ× ν(S), which concludes the
proof. □

5.1. Exercises.

Exercise 5.1. Let X,Y be sets and µ, ν measures on X,Y respectively. Prove that
µ× ν is a measure on X × Y .

Exercise 5.2. Let X,Y be separable metric spaces. Show that

B(X × Y ) = Σ(B(X)⊗ B(Y )).

Exercise 5.3. Let X,Y be separable metric spaces and µ, ν finite Borel measures
on X,Y respectively. Show that µ × ν|B(X×Y ) is the unique countably additive set
function on B(X×Y ) satisfying µ(A×B) = µ(A)×ν(B) for all A×B ∈ B(X)⊗B(Y ).

Exercise 5.4. Prove Fubini’s theorem and Exercises 5.2 and 5.3 for σ-finite mea-
sures µ, ν.

Exercise 5.5. Show that Theorem 5.3 (3) may fail if

(1) f : X × Y → R is measurable but not integrable; Hint: consider µ, ν the
counting measure on N. Exploit the “identity”

(1− 1) + (1− 1) + . . . = 1 + (−1 + 1) + (−1 + 1) + . . .

(2) f : X × Y → R+ is measurable but µ is not σ-finite. Hint: consider µ = L1,
ν the counting measure on R.

Prove Theorem 5.3 (3) for f : X × Y → R integrable, even if µ, ν are not σ-finite.

Exercise 5.6. Note in Theorem 5.3 (2) we must exclude a set of measure zero.
Indeed, if V is a Vitali set, note that V × {0} ⊂ R2 is L2-measurable.

Exercise 5.7. Let X be a separable metric space and f : X → [0,∞) a Borel
function. Prove that ∫

X
f dµ =

∫ ∞

0
µ({x ∈ X : f(x) ≥ t}) dt.

Hint: consider
A = {(x, t) : f(x) ≥ t}.

Exercise 5.8. A measure µ on a metric space X is uniformly distributed if there
exists a g : (0,∞) → (0,∞) such that ν(B(x, r)) = g(r) for all x ∈ X and r > 0. Let
µ, ν be uniformly distributed Borel regular measures on a separable metric space X
(with functions g and h respectively). Let U ⊂ X be open.

(1) Observe that, for any x ∈ U ,

lim
r→0

ν(U ∩B(x, r))

h(r)
= 1

for every x ∈ U .
(2) Deduce that

µ(U) ≤ lim inf
r→0

h(r)−1

∫
U
ν(U ∩B(x, r)) dµ(x).
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(3) Deduce that

µ(U) ≤ lim inf
r→0

h(r)−1

∫
U
µ(U ∩B(y, r)) dν(y) = lim inf

r→0

g(r)

h(r)
ν(U).

Deduce that µ = cν for some c > 0.

6. Covering theorems

We will use B(x, r) to denote the closed ball in a metric space X centred at x ∈ X
with radius r ≥ 0. Since the centre and radius of a ball are not uniquely defined by
its elements, formally by a “ball” we mean a pair (x, r) ∈ X×(0,∞), but in practice
we mean the set of its elements.

Lemma 6.1 (Vitali covering lemma). Let X be a metric space and B an arbitrary
collection of closed balls of uniformly bounded radii. There exists a disjoint sub-
collection B′ ⊂ B such that any B ∈ B intersects a ball B′ ∈ B′ with

radB′ ≥ radB/2.

In particular, ⋃
B∈B′

5B ⊃
⋃
B∈B

B.

Here, 5B denotes the ball with the same centre as B and 5 times the radius.

Proof. For each n ∈ Z let

Bn = {B ∈ B : 2n ≤ radB < 2n+1}.

Since the balls in B have uniformly bounded radii, the Bn are empty for all n > N ,
for some N ∈ N. Let B′

N be a maximal disjoint sub-collection of BN . That is, the
elements of B′

N are disjoint elements of BN and if B ∈ BN , there exists a B′ ∈ B′
N

with B ∩ B′ ̸= ∅. (In general such a maximal collection exists by Zorn’s lemma.
See also Exercise 6.1.) Let B′

N−1 be a maximal collection such that B′
N ∪ B′

N−1 is a
disjoint collection. Repeat this for each i ∈ N, obtaining a maximal collection B′

N−i

such that B′
N ∪ . . . ∪ B′

N−i is a disjoint collection, and set B′ =
⋃

n≤N B′
n.

Now suppose that B ∈ B, say B ∈ Bn. Then by construction there exists B′ ∈ B′
m

for some m ≥ n with B ∩B′ ̸= ∅. In particular, radB′ ≥ radB/2.
The final statement of the lemma follows from the triangle inequality. □

Definition 6.2. Let X be a metric space and S ⊂ X. A Vitali cover of S is a
collection B of closed balls such that, for each x ∈ S and each ϵ > 0, there exists a
ball B ∈ B with radB < ϵ and x ∈ B.

Proposition 6.3. Let X be a metric space, S ⊂ X and suppose that B is a Vitali
cover of S. Then there exists a disjoint B′ ⊂ B such that, for every finite I ⊂ B′,

S \
⋃
B∈I

B ⊂
⋃

B∈B′\I

5B.

In particular, if B′ = {B1, B2, . . .} is countable (for example, if X is separable), then

S \
n⋃

i=1

Bi ⊂
⋃
i>n

5Bi

for each n ∈ N.
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Proof. Note that we may suppose B consists of balls with uniformly bounded radii.
Let B′ be a disjoint sub-collection of B obtained from Lemma 6.1. If I ⊂ B′ is finite
then

C :=
⋃
B∈I

B

is closed. Therefore, if x ∈ S \ C, since B is a Vitali cover of S, there exists B ∈ B
with x ∈ B such that B ∩ C = ∅. However, B must intersect some B′ ∈ B′ with
radB′ ≥ radB/2, and so x ∈ 5B′. That is, x belongs to⋃

B∈B′\I

5B,

as required. □

Definition 6.4. A Borel measure µ on a metric space X is a doubling measure if
there exists a Cµ ≥ 1 such that

0 < µ(2B) ≤ Cµµ(B) <∞

for all balls B ⊂ X.

Remark 6.5. Note that, for any m ≥ 2,

µ(mB) ≤ C
log2 m
µ µ(B).

Lebesgue measure is a doubling measure.

Theorem 6.6 (Vitali covering theorem). Let µ be a doubling measure on a metric
space X and let B be a Vitali cover of a set S ⊂ X. There exists a countable disjoint
B′ ⊂ B such that

µ

(
S \

⋃
B∈B′

B

)
= 0.

Proof. First note that it suffices to prove the result for S bounded, say S is contained
in some ball B̃. We may also suppose that each B ∈ B is a subset of 2B̃.

Let B′ be a disjoint sub-collection of B obtained from Proposition 6.3. Note that
B′ is countable. Indeed, for each m ∈ N, at most mµ(2B̃) balls B ∈ B′ can satisfy
µ(B) > 1/m.

Enumerate B′ = {B1, B2, . . .}. Since the Bi are disjoint subsets of 2B̃,∑
i>n

µ(Bi) → 0.

By the conclusion of Proposition 6.3,

S \
n⋃

i=1

Bi ⊂
⋃
i>n

5Bi

for each n ∈ N. Since µ is doubling, µ(5Bi) ≤ Cµ(Bi) for each i ∈ N and so

µ

(
S \

n⋃
i=1

Bi

)
≤ C

∑
i>n

µ(Bi) → 0,

as required. □
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Definition 6.7. Let µ be a Borel measure on a metric space X and f : X → R
µ-measurable. Suppose that 0 < µ(B(x, r)) <∞ for all x ∈ X and all r > 0.

Define the Hardy–Littlewood maximal function of f by

Mf(x) = sup
r>0

1

µ(B(x, r))

∫
B(x,r)

|f |dµ.

By Exercise 6.3, the maximal function is a Borel function.

Theorem 6.8 (Hardly–Littlewood maximal inequality). Let µ be a doubling mea-
sure on a metric space X. There exists a C > 0 such that, for any f : X → R and
λ > 0,

(6.1) µ({x :Mf(x) > λ}) ≤ C

λ

∫
|f | dµ.

Proof. For λ > 0, let
S = {x ∈ X :Mf(x) > λ}

and, for each R > 0, let SR be those x ∈ X for which there exists 0 < r < R such
that

(6.2)

∫
B(x,r)

|f |dµ > λµ(B(x, r)).

Similarly to Exercise 6.3, each SR is a Borel set. Moreover, the SR monotonically
increase to S. For a moment fix R > 0. Let B be the collection of balls B(x, r)
with x ∈ SR and 0 < r < R that satisfy (6.2) and let B′ satisfy the conclusion of
Lemma 6.1. Then ∫

X
|f |dµ ≥

∑
B∈B′

∫
B
|f |dµ

>
∑
B∈B′

λµ(B)

≥ 1

C
log2 5
µ

∑
B∈B′

λµ(5B)

≥ λ

C
log2 5
µ

µ(SR).

In particular, (6.1) holds for C = C
log2 5
µ . □

Theorem 6.9 (Lebesgue differentiation theorem). Let µ be a doubling measure on
a metric space X and f : X → R with

∫
f dµ <∞. For µ-a.e. x ∈ X,

1

µ(B(x, r))

∫
B(x,r)

|f − f(x)| dµ→ 0

as r → 0. Such an x is called a Lebesgue point of f .

Proof. First note that the theorem is true if f is continuous.
Fix ϵ > 0 and let g : X → R be continuous with∫

|f − g| dµ < ϵ

(such a g exists by Exercise 3.1). Let

B = {x ∈ X : |f(x)− g(x)| ≥
√
ϵ},

so that µ(B) <
√
ϵ.
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If
S = {x :M(f − g) >

√
ϵ},

then by Theorem 6.8,

µ(S) ≤ C√
ϵ
∥f − g∥1 < C

√
ϵ.

Moreover, if x ̸∈ S,
1

µ(B(x, r))

∫
B(x,r)

|f − g|dµ ≤
√
ϵ

for all r > 0. In particular, since g is continuous at x,

lim sup
r→0

1

µ(B(x, r))

∫
B(x,r)

|f − g(x)|dµ ≤
√
ϵ.

Therefore, if x ̸∈ B,

lim sup
r→0

1

µ(B(x, r))

∫
B(x,r)

|f − f(x)|dµ ≤ 2
√
ϵ.

We are now done; repeat the above for a countable collection of ϵ → 0. The
corresponding B ∪ S monotonically decrease to a set of measure zero. The set of
x ∈ X that does not belong to infinitely many of the B ∪ S has full measure, and
for such an x,

lim
r→0

1

µ(B(x, r))

∫
B(x,r)

|f − f(x)|dµ = 0.

□

Corollary 6.10. Let µ be a doubling measure on a metric space X and let S ⊂ X
be µ-measurable with µ(S) <∞. Then

lim
r→0

µ(S ∩B(x, r))

µ(B(x, r))

equals 1 for µ-a.e. x ∈ S and 0 for µ-a.e. x ̸∈ S. Such an x for which the limit
equals 1 is called a density point of S.

6.1. Exercises.

Exercise 6.1. Let X be a separable metric space. Show that for any collection of
balls, there exists a maximal disjoint sub-collection.

Exercise 6.2. Show that the 5r covering Lemma may not be true if the radii are
not uniformly bounded.

Exercise 6.3. Let µ be a finite Borel measure on a metric space (X, d) and let
xn → x ∈ X such that d(x, xn) is a decreasing sequence. Let U(y, r) denote the
open ball centred on y with radius r.

(1) Show that, for any r > 0,

U(x, r) \ U(xn, r)

decreases to the empty set.
(2) Deduce that y 7→ µ(U(y, r)) is lower semi-continuous.
(3) Give an example to show that y 7→ µ(U(y, r)) may not be continuous.
(4) Show that, for any y ∈ X,

µ(B(y, r)) = lim
Q∋q↓r

µ(U(y, q)).

(5) Deduce that, for any r > 0, y 7→ µ(B(y, r)) is a Borel function.
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(6) Show that the Hardy–Littlewood maximal function is equivalently defined
by taking the supremum over all rational r > 0.

(7) Deduce that the Hardy–Littlewood maximal function is a Borel function.

Exercise 6.4. Let µ be a doubling measure on a metric space X and let S ⊂ X with
µ(S) < ∞. Suppose that there exists a µ-measurable S′ ⊃ S with µ(S′) = µ(S).
Show that

lim
r→0

µ(S ∩B(x, r))

µ(B(x, r))
= 1

for µ-a.e. x ∈ S.

Exercise 6.5. Prove that on Rn, Ln = cHn for some c > 0. There are two ways to
prove this (recall Exercise 1.5 Items 1 and 2).

Let µ, ν be two finite Borel measures on a set X with µ ≪ ν and suppose that
ν is doubling. Show that the Radon–Nikodym derivative of µ with respect to ν is
given by

lim
r→0

µ(B(x, r))

ν(B(x, r))

for ν-a.e. x ∈ X.

Exercise 6.6. For f = χ[0,1], show that Mf does not have finite integral.

7. Differentiability of Lipschitz functions

The regularity of a Lipschitz function f : Rn → R is very interesting. Of course,
Lipschitz functions are continuous, but they may not be differentiable everywhere.
However, it is quite easy to convince yourself that they cannot be non-differentiable
on quite a large set. The question to quantify how large the non-differentiability
set of a Lipschitz function can be was one of the motivating questions of Lebesgue’s
development of measure theory.

Definition 7.1. Let f : [a, b] → R. The total variation of f , V f : [a, b] → [0,∞] is
defined by

V f(x) = sup
n∑

i=1

|f(ti)− f(ti−1)|

where the supremum ranges over all a = t0 < t1 < . . . < tn = b.
If V f(b) <∞, f is said to have bounded variation (BV).

Definition 7.2. A function f : [a, b] → R is absolutely continuous (AC) if for any
ϵ > 0 there exists a δ > 0 such that, for any intervals (a1, b1), (a2, b2) . . . ⊂ [a, b] with∑

i |bi − ai| < δ, we have
∑

i |f(bi)− f(ai)| < ϵ.

Note that AC functions are BV, and Lipschitz functions are AC (see Exercise 7.1).
Also, if f is BV then V f and V f − f are non-decreasing. If f is AC then so are V f
and V f − f , see Exercise 7.2.

Theorem 7.3 (Lebesgue). Let f : [a, b] → R be absolutely continuous. Then f is
differentiable L1 almost everywhere. Moreover, for any x > y ∈ [a, b],

f(x)− f(y) =

∫ x

y
f ′ dx.
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Proof. By Exercise 7.2 it suffices to assume that f is non-decreasing. In this case
define a measure µ on [a, b] using the Carathéodory construction with F the set of
compact intervals and ζ([c, d]) = f(d) − f(c). This defines a finite Borel measure
such that µ([c, d]) = f(d)− f(c) for all intervals [c, d] ⊂ [a, b]. Indeed, for any δ > 0,
we may cover [c, d] by finitely many intervals [c, c1], [c1, c2], . . . , [ck, d] of width δ

′ ≤ δ,
showing

µ([c, d]) ≤
∑

f(ci+1)− f(ci) = f(d)− f(c).

The reverse inequality holds because f is non-decreasing.
Note that µ ≪ L1. Indeed, given ϵ > 0, let δ > 0 be given by the definition of

f being absolutely continuous. If L1(N) = 0, we may cover N by countably many
closed intervals Ii such that

∑
i L1(Ii) < δ. In particular

∑
i f(Ii) < ϵ and hence

µ(N) < ϵ. Therefore,

µ =

∫
dµ

dL1
dL1,

with dµ/ dL1 ∈ L1(L1).
By the Lebesgue differentiation theorem, for any Lebesgue point x of dµ/ dL1,

lim
t→0

f(x+ t)− f(x)

t
= lim

t→0

µ([x+ t, x])

t

= lim
t→0

1

t

∫ x+t

x

dµ

dL1
dL1

=
dµ

dL1
(x).

□

Theorem 7.4 (Rademacher). Any Lipschitz f : Rn → R is differentiable Ln almost
everywhere.

Proof. For notational simplicity, we prove the case n = 2.
For each y ∈ R, x 7→ f(x, y) is a Lipschitz function R → R and so is differentiable

L1-a.e. That is, for every y, ∂1f(x, y) exists for L1-a.e. x. By Fubini’s theorem, ∂1f
exists L2-a.e. Similarly, ∂2f exists almost everywhere too.

Fix ϵ > 0. For D ∈ Q2 and j ∈ N let

XD,j = {x : |f(x+ hei)− f(x)−Dih| < ϵ|h|, ∀0 < |h| < 1/j, i = 1, 2}.

These are Borel sets. Further, for D ∈ Q2, if

|∂1f(x)−D1| < ϵ/2 and |∂2f(x)−D2| < ϵ/2,

then x ∈ XD,j for sufficiently large j. That is,

Xϵ =
⋃
D∈Q

⋃
j∈N

XD,j

is a set of full measure.
Fix D ∈ Q2 and j ∈ N. Let x be a density point of XD,j . Let R > 0 such that

Ln(B(x, r) ∩XD,j) ≥ (1− ϵn)Ln(B(x, r))

for all 0 < r < R. In particular, for every y ∈ B(x, r) there exists y′ ∈ XD,j with

∥y − y′∥ < ϵ∥y − x∥.
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Now let r < min{R, 1/j} and ∥x − y∥ < r. Set h = y − x, ỹ = x + π1y and
˜̃y ∈ XD,j with

∥ỹ − ˜̃y∥ < ϵ∥x− ỹ∥ ≤ ϵ∥x− y∥.
Also let y′, y′′ lie on the same vertical line as ˜̃y such that y′, ỹ have the same vertical
component as do y′′, ˜̃y. Then, since x ∈ XD,j ,

(7.1) |f(ỹ)− f(x)−D1h1| < ϵ|h1| = ϵ∥x− ỹ∥ ≤ ϵ∥x− y∥;
Since f is Lipschitz,

(7.2) |f(ỹ)− f(y′)| ≤ L∥ỹ − y′∥ ≤ Lϵ∥x− y∥;
Since ˜̃y ∈ XD,j ,

(7.3) |f(y′′)− f(y′)−D2h2| ≤ ϵ∥y′ − y′′∥ ≤ ϵ∥x− y∥;
Since f is Lipschitz,

(7.4) |f(y′′)− f(y)| ≤ L∥y′′ − y∥ = L∥y′ − ỹ∥ ≤ L∥˜̃y − ỹ∥ ≤ ϵL∥x− y∥.
By combining Eqs. (7.1) to (7.4),

|f(y)− f(x)−D · h| ≤ 2(1 + L)ϵ∥x− y∥.
This is true for all y with ∥x − y∥ < r and for any density point x of the full

measure set Xϵ. That is, for Ln-a.e x. Taking a countable intersection over ϵ → 0
concludes the proof. □

7.1. Exercises.

Exercise 7.1. Prove that Lipschitz functions are AC and that AC functions are
BV.

Exercise 7.2. Let f : [a, b] → R be BV. Show that V f and V f − f are non-
decreasing. If f is AC then show that V f and V f − f are AC.

Exercise 7.3. Show that any monotonic f : R → R is continuous except at count-
ably many points.

Exercise 7.4. In this exercise we will show that monotonic functions are differen-
tiable almost everywhere.

Let f : [a, b] → R be non-decreasing. For each x ∈ (a, b) let

Df(x) = lim inf
h→0

f(x+ h)− f(x)

h
Df(x) = lim sup

h→0

f(x+ h)− f(x)

h
.

Observe that the set of x ∈ (a, b) where f is not differentiable at x is the countable
union, over p < q ∈ Q, of the sets

Bp,q := {x ∈ (a, b) : Df(x) < p < q < Df(x)}.
We now fix p < q ∈ Q.

(1) Let
B = {[x, x+ h] : f(x+ h)− f(x) < ph}.

Note that B satisfies the hypotheses of the Vitali covering theorem (recall
Theorem 6.6). Let B′ be a disjoint sub-cover obtained from the Vitali cov-
ering theorem with respect to Lebesgue measure and let S = ∪B′. Prove
that

L1(f(Bp,q ∩ S)) ≤ pL1(Bp,q ∩ S).
Note: this is the step where we require f to be monotonic.
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(2) Similarly, prove that L1(f(Bp,q ∩ S)) ≥ qL1(Bp,q ∩ S).
(3) Deduce that f is differentiable almost everywhere.
(4) Deduce that a BV function is differentiable almost everywhere.

However, BV functions do not satisfy the fundamental theorem of calculus:

Exercise 7.5. Recall the definition of the Cantor set from Exercise 1.6. Define the
Cantor function f : [0, 1] → [0, 1] as follows. For each n ∈ N, define fn : [0, 1] → [0, 1]
by

f(x) =

(
3

2

)n

L1([0, x] ∩ Cn).

Show that the fn converge uniformly on [0, 1] to a monotonic, continuous function
f . For each x ∈ [0, 1] \ C, show that f ′(x) = 0.

Thus, f is monotonic and hence BV, has derivative 0 almost everywhere, but does
not satisfy the fundamental theorem of calculus.

Exercise 7.6. In lectures we proved that the derivative of any AC function is
an absolutely continuous measure. Prove the converse: for any finite, absolutely
continuous measure µ on [0,∞), show that

f(x) :=

∫ x

0

dµ

dL1
dL1 = µ([0, x])

defines an absolutely continuous function.

Up to now, we have considered points where functions are differentiable. We now
consider points of non-differentiability (which are much more interesting).

Exercise 7.7. Show that the Cantor function is not differentiable at any point of
the Cantor set.

Exercise 7.8. Let N ⊂ [0, 1] satisfy L1(N) = 0.

(1) For each n ∈ N, iteratively construct a countable collection of open intervals
On such that, for each n ∈ N,

• N is contained in the union of On;
• for every I ∈ On there exists J ∈ On−1 with I ⊂ J ;
• for each I ∈ On−1,

L1(I ∩ ∪{J : J ∈ On}) < 2−n|I|.

(2) Let

S =
⋂
n∈N

⋃
m>n

∪{J : J ∈ Om},

the “limsup” of the On (S is the set of points that are contained in infinitely
many intervals from the On). In particular, S ⊃ N .

For each x ∈ [0, 1] \ S, let N(x) be the largest n for which there exists
I ∈ On with x ∈ I. Define P (x) = 1 if N(x) is even, P (x) = 0 otherwise.
Finally, for each x ∈ [0, 1] define

f(x) = L1({t ∈ [0, x] : P (t) = 1}).

Show that f is Lipschitz, monotonic, and not differentiable at any point
of N . Hint: show that Df(x) = 0 and Df(x) = 1 for each x ∈ N .
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Part 2. Some topics in Geometric Measure Theory

8. Hausdorff measure and densities

Recall the definition of Hausdorff measure from Exercise 1.5.
We are interested in the measure Hs|S , for S ⊂ X some Hs-measurable set with

Hs(S) < ∞. In particular, we require some counterpart to the Lebesgue density
theorem, but, of course, Hs|X may not be locally finite.

Definition 8.1. Let X be a metric space, A ⊂ X and s ≥ 0. The upper and lower
Hausdorff densities of A are

Θ∗,s(A, x) = lim sup
r→0

Hs(A ∩B(x, r))

(2r)s

and

Θs
∗(A, x) = lim inf

r→0

Hs(A ∩B(x, r))

(2r)s
.

Lemma 8.2. Let X be a metric space, s ≥ 0 and A ⊂ X with Hs(A) <∞. Then

2−s ≤ Θ∗,s(A, x) ≤ 1

for Hs-a.e. x ∈ A.

Proof. The set of x ∈ A with Θ∗,s(A, x) < 2−s is a countable union countable of the
sets

Sδ := {x ∈ A : Hs(A ∩B(x, r)) < (1− δ)rs ∀0 < r < δ}.
Thus, for the first inequality, it suffices to show that Hs(Sδ) = 0 for all δ > 0.

Fix δ, ϵ > 0. We may cover Sδ by sets E1, E2, . . . such that, for each i ∈ N,
diamEi < ϵ, Sδ ∩ Ei ̸= ∅ and∑

i∈N
diamEs

i ≤ Hs(Sδ) + ϵ.

For each i ∈ N let xi ∈ Sδ ∩ Ei and set ri = diamEi. Then

Hs(Sδ) ≤
∑
i∈N

Hs(Sδ ∩ Ei) ≤
∑
i∈N

Hs(A ∩B(xi, ri))

≤ (1− δ)
∑
i∈N

diamEs
i ≤ (1− δ)(Hs(Sδ) + ϵ).

Since ϵ > 0 is arbitrary and δ > 0, this implies Hs(Sδ) = 0, as required.
For the second inequality, since Hs is Borel regular (see Exercise 8.2), it suffices

to assume that A is Borel. As before, given δ > 0, it suffices to prove that

S := {x ∈ A : Θ∗,s(A, x) > 1 + δ}

satisfies Hs(S) = 0. Fix ϵ > 0 and let U ⊃ S be open with

Hs(A ∩ U) ≤ Hs(S) + ϵ

(which exists by the outer regularity of the measure Hs|A). Let Bϵ be the collection
of balls B centred at a point of S with radB < ϵ such that B ⊂ U and

(8.1) Hs(A ∩B) > (1 + δ)(2 radB)s.

This is a Vitali cover of S. Let B′
ϵ be obtained from Proposition 6.3.
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Since Hs(S) < ∞, S is separable (see Exercise 8.4) and so B′
ϵ = {B1, B2, . . .} is

countable and the conclusion of Proposition 6.3 states that

S \
⋃
i∈N

Bi ⊂
⋃
i>n

5Bi

for each n ∈ N. Since diamBi < ϵ for each i ∈ N, the Bi and 5Bi may be used to
estimate Hs

10ϵ(S). For each n ∈ N we obtain

Hs
10ϵ(S) ≤

∑
i∈N

(2 radBi)
s +

∑
i>n

(10 radBi)
s

≤
∑
i∈N

Hs(A ∩Bi)

1 + δ
+ 5s

∑
i>n

Hs(A ∩Bi)

1 + δ

where the second inequality follows by (8.1). Since the Bi are disjoint and Hs(A) <
∞, the second term converges to 0 as n → ∞. Since the Bi are subsets of U we
obtain

Hs
10ϵ(S) ≤

Hs(A ∩ U)

1 + δ
≤ Hs(S) + ϵ

1 + δ
.

Since ϵ > 0 is arbitrary, this implies Hs(S) ≤ Hs(S)/(1 + δ) and hence Hs(S) = 0,
as required. □

Lemma 8.3. Let X be a metric space, s ≥ 0 and let A ⊂ X be Hs-measurable with
Hs(A) <∞. Then

Θ∗,s(A, x) = 0

for Hs-a.e. x ̸∈ A.

Proof. It suffices to show that, for t > 0, the set

S = {x ∈ X \A : Θ∗,n(A, x) > t}

satisfies Hs(S) = 0. Fix ϵ > 0. Since A is Hs-measurable, Hs|A is Borel regular.
Therefore, since Hs|A(S) = 0, there exists an open U ⊃ S with

Hs(A ∩ U) = Hs|A(U) < ϵ.

For each x ∈ S and δ > 0 there exists a ball B centred on x with radB < δ such
that

Hs(A ∩B)

(2 radB)s
> t.

By Lemma 6.1 there exists a disjoint collection B of such balls such that

S ⊂
⋃
B∈B

5B.

Since Hs(A) <∞, A is separable and each of these balls contains a point of A, B is
countable. Therefore

tHs
5δ(S) ≤ t

∑
B∈B

(2 rad 5B)s < 5s
∑
B∈B

Hs(A ∩B) ≤ 5sHs(A ∩ U) < 5sϵ.

Since δ, ϵ > 0 are arbitrary, this completes the proof. □
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8.1. Exercises.

Exercise 8.1. Let V ⊂ [0, 1] be a Vitali set as constructed in Exercise 1.8.

(1) Show that, for any Borel B ⊂ V, L1(B) = 0.
(2) Deduce that L1([0, 1] \ V) = 1 and hence, if C is a Borel set with

[0, 1] \ V ⊂ C ⊂ [0, 1],

then L1(C) = 1.
(3) Hence show that L1(V ∩ C) = L1(V) > 0.

Note however that we cannot deduce the value of L1(V) from our construction in
Exercise 1.8. Indeed, for any ϵ > 0, that construction may produce a V ⊂ [0, ϵ].

Exercise 8.2. Let X be a metric space and s ≥ 0.

(1) Show that Hs is Borel regular. Hint: first show that in the definition of Hs,
we may take F to be the collection of closed sets.

(2) We are usually interested in Hs|A for some A ⊂ X. Show that for any
A ⊂ X, Hs|A is a Borel measure.

(3) Now assume that A ⊂ X is Hs-measurable with Hs(A) < ∞. Show that
Hs|A is Borel regular. Hint: show that there exist Borel sets B ⊃ A ⊃ B′

with Hs(B \B′) = 0.
(4) Show that Hs|A may not be Borel regular if A is not Hs measurable. Hint:

consider Exercise 8.1.

Exercise 8.3. In this exercise we construct the four corner Cantor set. Let K0 =
[0, 1]2. Let K1 be the “four corners” of K0 of side length 1/4. That is

K1 = [0, 1/4]2 ∪ [3/4, 1]2 ∪ [0, 1/4]× [3/4, 1] ∪ [3/4, 1] ∪ [0, 1/4].

Inductively, Kn is constructed by taking the four corners of side length 1/4n of
all the squares of Kn−1. Finally let K =

⋂
n∈NKn, a compact set. Show that

0 < H1(K) <∞.

Exercise 8.4. For s ≥ 0 let X be a metric space with Hs(X) < ∞. Show that X
is separable.

Exercise 8.5. Show that Lemmas 8.2 and 8.3 may be false if A has only σ-finite
Hs measure.

9. Rectifiable sets and approximate tangent planes

Rectifiable sets are the measure theoretic counterpart to manifolds.

Definition 9.1. AHn-measurable set E ⊂ Rm is n-rectifiable if there exist Lipschitz
fi : Rn → Rm such that

Hn

(
E \

⋃
i∈N

fi(Rn)

)
= 0.

We will show that n-rectifiable sets possess a unique approximate n-dimensional
tangent plane at almost every point.

Given V ∈ G(m,n), a ∈ Rn and 0 < s < 1 define the cone around V centred at
a with aperture s as

C(a, V, s) = {x ∈ Rn : dist(x− a, V ) < s∥x− a∥}.
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Definition 9.2. Let A ⊂ Rm and a ∈ A. A V ∈ G(m,n) is an approximate tangent
plane to A at a if

(9.1) lim sup
r→0

Hn(A ∩B(a, r))

rn
> 0

and, for every 0 < s < 1,

(9.2) lim
r→0

Hn(A ∩B(a, r) \ C(a, V, s))
rn

= 0.

Rademacher’s theorem gives a candidate for the approximate tangent plane to a
rectifiable set. There are three steps required to prove that the derivative is indeed
an approximate tangent plane: show that the derivative has full rank at almost
every point; prove the density condition (9.1); and show that the sets from other
parametrisations of the rectifiable set do not destroy the approximation by a tangent
plane at almost every point.

The second and third steps follow from the results of the previous section. For
the first step we use the following.

Lemma 9.3 (Easy Sard’s theorem). If f : Rn → Rm is Lipschitz then

Hn({f(x) : rankDf(x) < n}) = 0.

Proof. Let L = Lip f . Fix 0 < R <∞, δ, ϵ > 0 and let

A = {x ∈ B(x,R) : rankDf(x) < n}.

For x ∈ A let

Wx = f(x) +Df(x)(Rn).

Then for sufficiently small 0 < rx < δ,

f(B(x, rx)) ⊂ B(f(x), Lrx) ∩ {y : dist(y,Wx) < ϵrx}.

Since rankDf(x) < n, the set on the right hand side can be covered by (L/ϵ)n−1

cubes of side length ϵrx.
Since A is covered by balls of the form B(x, rx/5), there exists a disjoint collection

of balls B(xi, ri/5) such that A is covered by the union of the B(xi, ri). Then

f(A) ⊂ f

(⋃
i∈N

B(xi, ri)

)
⊂
⋃
i∈N

f(B(xi, ri)).

By the previous argument, each factor of the right hand side is covered by (L/ϵ)n−1

cubes of side length ϵri. Thus

Hn
2δ(f(A)) ≤

∑
i∈N

(
L

ϵ

)n−1

(ϵri)
n−1 = Ln−1ϵ

∑
i∈N

rni .

However, the B(xi, ri/5) are disjoint subsets of B(0, R+ δ) ⊂ Rn and so∑
i∈N

(ri
5

)n
≤ (R+ δ)n.

Since ϵ > 0 is arbitrary, this implies that Hn
2δ(f(A)) = 0 and hence Hn(f(A)) = 0.

Taking a countable union over R→ ∞ completes the proof. □
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Lemma 9.4. Let f : Rn → Rm be Lipschitz and S ⊂ Rn. Suppose that there exists
a δ > 0 such that, for each x, y ∈ S,

∥f(x)− f(y)∥ ≥ δ∥x− y∥.
Then f(S) has a unique approximate tangent plane at Hn almost every point.

Proof. By Lemma 9.3, we may suppose rankDf(x) = n for every x ∈ S. By
Lemma 8.2, we may suppose Θ∗,n(E, f(x)) > 0 for every x ∈ S. Fix x ∈ S and
0 < s < 1. There exists ϵ > 0 such that

∥f(y)− f(x)−Df(x)(y − x)∥ < s∥y − x∥
for all y ∈ B(x, ϵ) ∩ S. Moreover, if y ∈ S \B(x, ϵ) then

∥f(y)− f(x)∥ ≥ δϵ.

That is, if a = f(x) and b = f(y) with ∥a− b∥ ≤ δϵ and V = a+Df(x)(Rn),

dist(b− a, V ) < s∥y − x∥ ≤ s∥b− a∥/δ.
Therefore, V is an approximate tangent plane to f(S) at a.

This approximate tangent plane is unique at any density point x of S. Indeed, if
V ′ ̸= V , let v ∈ V \V ′ and let 0 < s < 1 be such that C(f(x),Rv, s)∩C(f(x), V ′, s) =
{0}. Since rankDf(x) = n and x is a density point of S, for sufficiently small r > 0
there exists y ∈ S ∩B(x, r) such that B(f(y), sr) ∩ C(f(x), V ′, s) = ∅ and

Hn(B(f(y), sr) ∩ S)
rn

≥ δs.

In particular, V ′ is not an approximate tangent to f(S′) at x. □

Theorem 9.5. Let E ⊂ Rm be n-rectifiable with Hn(E) < ∞. Then for Hn-a.e.
x ∈ E, E has a unique approximate tangent plane at x.

Proof. Let f : Rn → Rm be one of the Lipschitz functions as in the definition of
a rectifiable set and let S = f−1(E). It suffices to prove that E has a unique
approximate tangent plane at f(x) for Ln-a.e. x ∈ S.

By Lemma 9.3, we may suppose that dimDf(Rn) = n for all x ∈ S. Fix such an
x and let 0 < ϵ < ∥Df(x)−1∥/2. There exists δ > 0 such that

∥f(y)− f(x)−Df(x)(y − x)∥ < ϵ∥y − x∥
for all y ∈ B(x, δ) ∩ S. In particular, by the triangle inequality,

∥f(y)− f(x)∥ > ϵ∥y − x∥/2.
Therefore, the sets

Sϵ := {x ∈ G : ∥f(y)− f(x)∥ > ϵ∥y − x∥ ∀y ∈ B(x, ϵ)}
are Borel and monotonically increase to S as ϵ→ 0. Therefore it suffices to prove the
result for Ln-a.e. x in some fixed Sϵ. Cover Sϵ by finitely many balls B1, B2, . . . , BN

of radius ϵ. It suffices to prove the result for Ln-a.e. x in some fixed S′ := Sη ∩Bi.
However, S′ satisfies the hypotheses of Lemma 9.4 and so f(S′) has a unique

approximate tangent at Hn almost every point. To see that this tangent is a unique
approximate tangent to E at Hn almost every point, we simply use Lemma 8.3: for
Hn-a.e. x ∈ f(S′), Θ∗,n(E \ f(S′), x) = 0. □

In Theorem 10.10 we will see that the converse to Theorem 9.5 holds.
For V ∈ G(n,m), write πV for the orthogonal projection onto V and equipG(n,m)

with the metric d(V,W ) = ∥πV −πW ∥. We will consider Ln on an element ofG(n,m).
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Lemma 9.6. Let f : Rm ⊂ Rn → Rm be Lipschitz and let S ⊂ Rn satisfy Ln(S) > 0.
For ϵ > 0 suppose that there exists an invertible linear L : Rn → Rm such that, for
all x, y ∈ S,

∥f(x)− f(y)− L(x− y)∥ < ϵ

∥L−1∥
∥x− y∥.

Then for any V ∈ G(n,m) with ∥(πV |L(Rn))
−1∥−1 ≥ 2ϵ, Ln(πV (f(S))) > 0.

Proof. For any V ∈ G(n,m),

∥πV (f(x)− f(y))− πV (L(x− y))∥ < ϵ∥L−1∥−1∥x− y∥

and so, if ∥(πV |L(Rn))
−1∥−1 ≥ 2ϵ,

∥πV (f(x)− f(y))∥ ≥ ∥πV (L(x− y))∥ − ϵ∥L−1∥−1∥x− y∥
≥ ∥(πV |L(Rn))

−1∥−1∥L(x− y)∥ − ϵ∥L(x− y)∥
≥ ϵ∥L(x− y)∥
≥ ϵ∥L−1∥∥x− y∥.

Thus πV ◦f has Lipschitz inverse on S and hence Ln(πV (f(S))) > 0 by Exercise 1.5.
□

Corollary 9.7. Let E ⊂ Rm be n-rectifiable with Hn(E) > 0. Then there exists
W ∈ G(m− n,m) such that πV (E) > 0 for all V ∈ G(n,m) with V ∩W = {0}.

Remark 9.8. The set of V that satisfy the conclusion of Corollary 9.7 is very large;
try some examples in reasonable dimensions.

Proof. Since E ⊂ Rm is rectifiable with Hn(E) > 0, there exists a Lipschitz f : Rn →
Rm with Hn(E ∩ f(Rn)) > 0. In particular, S := f−1(E) satisfies Ln(S) > 0. By
Lemma 9.3, for Ln-a.e. x ∈ S, Df(x) is injective.

Fix ϵ > 0 For M > 0, the set of invertible L : Rn → Rm with ∥L−1∥ < M may be
covered by countably many sets of diameter ϵ/M . Varying M ∈ N, we see that Ln

almost all of S is covered by countably many sets of the form

{x ∈ S : ∥Df(x)− L∥ < ϵ/2∥L−1∥}.

Moreover, each of these sets may be covered by countably many sets of the form

{x ∈ S : ∥f(x)− f(y)− L(x− y)∥ < ϵ∥x− y∥/∥L−1∥ ∀y ∈ B(x, ϵ)}.

Finally, these sets may be covered by countably many sets of diameter ϵ. Therefore,
for each j ∈ N there exists Sj ⊂ S and invertible Lj : Rn → Rm such that, for all
x, y ∈ Sϵ

j ,

∥f(x)− f(y)− Lj(x− y)∥ < ϵ∥x− y∥/∥Lj∥−1,

and Ln(S \
⋃

j∈N Sj) = 0.

Since Ln(S) > 0, there exists j ∈ N with Ln(Sj) > 0. Then Sj satisfies the
hypotheses of Lemma 9.6 and so Ln(πV (S)) ≥ Ln(πV (Sj)) > 0 for all V ∈ G(n,m)
with ∥(πV |Lj(Rn))

−1∥−1 ≥ 2ϵ. Let Lϵ = Lj . Repeat this for each i ∈ N with ϵ = 1/i.

The set G(n,m) is compact and so we may suppose that L1/i(Rn) →W ∈ G(n,m).

The only V ∈ G(n,m) for which Ln(πV (S)) = 0 satisfy ∥(πV |L1/i(Rn))
−1∥−1 <

2/i and hence ∥(πV |W )−1∥−1 < 2/i for each i ∈ N. That is, V ∩ W⊥ ̸= {0} as
required. □
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9.1. Exercises.

Exercise 9.1. Let X be a metric space, Y ⊂ X and f : Y → R L-Lipschitz. Define
f̃ : X → R by

f̃(x) = sup{f(y)− Ld(x, y) : y ∈ Y }.
(1) Show that f̃ is an L-Lipschitz extension of f to X. This is called the

McShane–Whitney extension theorem
(2) If f : Y → Rn is L-Lipschitz, show that there is a

√
nL-Lipschitz extension

of f to X.
(3) The following example shows that the vector valued extension cannot have

the same Lipschitz constant in general: Let

Y = {(−1, 1), (1,−1), (1, 1)} ⊂ ℓ2∞

and define

f(−1, 1) = (−1, 0), f(1,−1) = (1, 0), f(1, 1) = (0,
√
3).

Show that f is 1-Lipschitz but has no 1-Lipschitz extension to Y ∪ {(0, 0)}.
(4) However, the Kirszbraun extension theorem states that any Lipschitz map

between any two Hilbert spaces may be extended whilst preserving the Lip-
schitz constant.

Exercise 9.2. (1) Let E ⊂ Rm be n-rectifiable. Show that Hn|E is σ-finite.
(2) Show that Theorem 9.5 may not be true if E does not satisfy Hn(E) <∞.

10. Purely unrectifiable sets

Definition 10.1. A Hn-measurable set S ⊂ Rm is purely n-unrectifiable if, for all
n-rectifiable E ⊂ Rn, Hn(S ∩ E) = 0.

Lemma 10.2. The four corner Cantor set K ⊂ R2 is purely 1-unrectifiable.

Proof. Observe that the coordinate projections of K have L1 measure zero (see
Exercise 10.1). If there existed a rectifiable γ ⊂ R2 with H1(γ ∩K) > 0, then γ ∩K
is a 1-rectifiable set of positive measure and hence, by Corollary 9.7, one of the
coordinate projections must have positive measure, a contradiction.

For a second proof see Exercise 10.2. □

Lemma 10.3. Let A ⊂ Rm be Hm-measurable with Hm(A) < ∞. There exists a
decomposition A = E ∪ S with E n-rectifiable and S purely n-unrectifiable.

Proof. Let

t = sup{Hn(E) : E ⊂ A,n-rectifiable}.
Since Hn(A) < ∞, t < ∞. Let Ei ⊂ A be n-rectifiable with Hn(Ei) → t. Then
E =

⋃
i∈NEi is n-rectifiable and is contained in A. Therefore

t ≥ Hn(E) ≥ Hn(Ei) → t

and so Hn(E) = t. Then S = A\E is purely n-unrectifiable. Indeed, if f : Rn → Rm

is Lipschitz, E′ = (A \ E) ∩ f(Rn), is Hm-measurable and so

t ≥ Hn(E ∪ E′) = Hn(E) +Hn(E′) = t+Hn(E′).

□
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We now state a very important theorem on the structure of purely unrectifiable
sets. It requires the notion of a natural measure γn,m on G(n,m) that is invariant
under the action of SO(m). There are several ways to construct this measure. The
simplest is to consider G(n,m) as a (compact) metric space equipped with the metric

d(V,W ) = ∥πV − πW ∥.

Then γn,m is given by (a scalar multiple of) Hn(m−n). We will not discuss the specific
details of this measure. When n = 1, we may identify G(1,m) with Sm−1. In this
case, γ1,m is simply Hm−1.

Theorem 10.4 (Besicovitch–Federer projection theorem). Let S ⊂ Rm be purely
n-unrectifiable with Hn(S) <∞. Then, for γn,m-a.e. V ∈ G(n,m),

Ln(πV (S)) = 0.

Conversely, if E ⊂ Rm is purely n-unrectifiable with Hn(E) > 0, for γn,m-a.e.
V ∈ G(n,m),

Ln(πV (E)) > 0.

Remark 10.5. The converse statement is given by Corollary 9.7.

We will prove the projection theorem for n = 1 and m = 2, which was proved
by Besicovitch. First we prove some preliminary geometric properties of purely
unrectifiable sets.

Lemma 10.6. Let E ⊂ Rm, V ∈ G(m − n,m) and 0 < s < 1. Suppose that, for
every x ∈ E,

E ∩ C(x, V, s) ∩B(x, r) = ∅.
Then E is n-rectifiable.

Proof. Since E may be divided into countably many sets of diameter at most r, we
may suppose diamE ≤ r. In this case, πV ⊥ has Lipschitz inverse on E. Indeed, if
x, y ∈ E then y ̸∈ C(x, V, s) and so

∥πV ⊥(x− y)∥ = dist(x− y, V ) ≥ s∥x− y∥.
Therefore, E is covered by a Lipschitz image of Rn. □

Lemma 10.7. Let S ⊂ Rm be purely n-unrectifiable, V ∈ G(m − n,m), 0 < s < 1
and 0 < δ, λ <∞. If

(10.1) Hn(S ∩ C(x, V, s) ∩B(x, r)) ≤ λrnsn

for every x ∈ S and 0 < r < δ then

Hn(S ∩B(a, δ/6)) ≤ 2 · 20nλδn

for every a ∈ S.

Remark 10.8. Note that this is certainly not true for a rectifiable set E; the first
cone may be empty for every x ∈ E.

Proof. For a fixed a ∈ S, we may suppose S ⊂ B(a, δ/6). By Lemma 10.6, we may
suppose that

S ∩ C(x, V, s/4) ̸= ∅
for every x ∈ S. For every x ∈ S let

h(x) = sup{|x− y| : y ∈ S ∩ C(x, V, s/4)},
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so that 0 < h(x) < δ/3 for all x ∈ S. Pick x∗ ∈ S ∩ C(x, V, s/4) with |x − x∗| ≥
3h(x)/4 and let Cx be the cylinder

Cx = π−1
V ⊥(πV ⊥(B(x, sh(x)/4))).

We claim that

(10.2) Cx ∩ S ⊂ C(x, V, s) ∩B(x, 2h(x)) ∪ C(x∗, V, s) ∩B(x∗, 2h(x)).

(Draw a picture!) Suppose z ∈ Cx ∩ S does not belong to the first set. Then

s∥x∗ − z∥ ≤ ∥πV ⊥(x∗ − z)|
≤ ∥πV ⊥(x∗ − x)∥+ ∥πV ⊥(x− z)∥
≤ s|x∗ − x|/4 + sh(x)/4

≤ sh(x)/2,

where the penultimate inequality follows because x∗ ∈ C(x, V, s/4) and z ∈ Cx.
Therefore

∥x− z∥ ≥ ∥x− x∗∥ − ∥x∗ − z∥
> 3h(x)/4− h(x)/2

≥ ∥πV ⊥(x− z)∥/s.

That is, z belongs to the first set in (10.2).
By (10.2) and (10.1),

H1(S ∩ Cx) ≤ 2λ(2h(x)s)n.

We apply Lemma 6.1 to the balls

πV ⊥(B(x, sh(x)/20))

with x ∈ S. This gives countably many xi ∈ S, for which these balls are disjoint,
and

S ⊂
⋃
i∈N

Cxi .

Therefore

Hn(S) ≤
∑
i∈N

Hn(Cxi)

≤ 2λ2n
∑
i∈N

(sh(xi))
n

= 2λ2n20n
∑
i∈N

(
sh(xi)

20

)n

.

But, the πV ⊥(B(xi, sh(xi)/20)) are disjoint subsets of B(πV ⊥(a), δ/2) ⊂ V ⊥ and so
the final sum is bounded above by (δ/2)n. □

Corollary 10.9. If S ⊂ Rm is purely n-unrectifiable with Hn(S) < ∞ then for
every V ∈ G(m− n,m), every 0 < s < 1 and Hn-a.e. x ∈ S,

Θ∗,n(S ∩ C(a, V, s), a) ≥ 240−n−1sn.

Proof. For a fixed V, s, this is immediate from the fact that Θ∗,n(S, a) ≥ 2−n al-
most everywhere. To obtain the conclusion for all V, s, note that the conclusion is
determined by a countable dense set of V, s. □
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Theorem 10.10. Let E ⊂ Rm satisfy Hn(E) < ∞ and suppose that, for Hn-a.e.
x ∈ E, E has a unique approximate tangent plane at x. Then E is n-rectifiable.

Proof. By Lemma 10.3, there exists a decomposition E = E′ ∪ S, where E′ is n-
rectifiable and S is purely n-unrectifiable. We must show that Hn(S) = 0. Note
that, by applying Lemma 8.3 to E′, we see that the approximate tangent plane to
E at x ∈ S is also an approximate tangent plane to S for Hn-a.e. x.

It suffices to show, for a fixed W ∈ G(n,m), that the set S′ of x ∈ S whose
approximate tangent plane Vx lies in B(W, δ) has measure zero. Suppose not. Then,
for any λ > 0, there exists an R > 0 such that the set S′′ of those x ∈ S′ with

sup
0<r<R

Hn(S ∩B(a, r) \ C(a, Va, 1/3))
rn

< λ3−n

has positive measure. Fix an x ∈ S′′. Since ∥πVx − πW ∥ ≤ 1/3, for every 0 < r < R
we have

C(x,W⊥, 1/3) ∩B(x, r) ⊂ B(x, r) \ C(x, Vx, 1/3).
Thus, for x ∈ S′′ and 0 < r < R,

Hn(S′ ∩ C(x,W⊥, 1/3) ∩B(x, r)) < λ3−nrn.

If λ < 240−m−1, Corollary 10.9 implies Hn(S′′) = 0, a contradiction. □

We now prove the Besicovitch projection theorem [1]

Theorem 10.11. Let S ⊂ R2 be purely 1-unrectifiable with H1(S) < ∞. Then for
H1-a.e. e ∈ S1,

L1(πe(S)) = 0.

We follow the presentation of Orponen [2].
From Corollary 10.9, we see that a purely unrectifiable set has many radiating

out of almost every point in all directions at almost every point. We now precisely
describe two ways in which this can occur.

Notation 10.12. Let S ⊂ R2 and x ∈ S. For e ∈ S1 let le(x) be the half line
x + [0,∞)e and for I ⊂ S1, let C(I, x) be the cone

⋃
e∈I le(x). For r > 0 let Hx(r)

be those e ∈ S1 for which

|K ∩ le(x) ∩B(x, r)| ≥ 2.

That is, S ∩ le(x)∩B(x, r) contains another point of K. Also let Hx =
⋂

r>0Hx(r),

the directions that contain other points of S arbitrarily close to x. For e ∈ S1, we
let He be those x ∈ S for which e ∈ Hx.

For R,M, ϵ > 0 let Dx(R,M, ϵ) be those e ∈ S1 for which there exists 0 < r < R
and an interval I ⊂ S1 with e ∈ I and 0 < H1(I) < ϵ such that

H1(S ∩ C(x, I) ∩B(x, r))

r
≥MH1(I).

That is, the density of S in the cone C(x, I) at scale r is very high, compared to the
length of I. Also let Dx =

⋂
R,M,ϵ>0Dx(R,M, ϵ). For e ∈ S1, we let De be those

x ∈ S for which e ∈ Dx.

The main step in proving Theorem 10.11 is the following.

Proposition 10.13. Let S ⊂ R2 be purely 1-unrectifiable with H1(S) < ∞. For
H1-a.e. x ∈ S, H1(S \Hx ∪Dx) = 0.
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Before proving Proposition 10.13, we will demonstrate how it is used to prove
Theorem 10.11.

Lemma 10.14 (Special case of the coarea formula). For any e ∈ S1 and any compact
K ⊂ R2, ∫

R
card(K ∩ le(t)) dt ≤ H1(K).

In particular, if H1(K) <∞ then for any e ∈ S1, L1(πe⊥(He)) = 0.

Proof. Since K is compact,

f(t) = card(K ∩ le(t))

is a Borel function. Indeed, if, for δ > 0,

fδ(t) = max{n ∈ N : ∃x1, . . . , xn ∈ K ∩ le(t) with ∥xi − xj∥ ≥ δ ∀1 ≤ i ̸= j ≤ n}

then fδ monotonically increases to f as δ → 0. Since K is compact, the fδ are lower
semi-continuous. Therefore, by the monotone convergence theorem, it suffices to
bound the integral of each fδ.

Fix δ > 0 and cover K by sets E1, E2, . . . with diamEi < δ such that∑
i∈N

diamEi ≤ H1(K) + δ.

Note that

fδ(t) ≤ card({i : Ei ∩ le(t) ̸= ∅}).

Therefore ∫
R
fδ dL1 ≤

∫
R

∑
i∈N

χ{(i,t):Ei∩le(t)̸=∅}

=
∑
i∈N

∫
R
χ{(i,t):Ei∩le(t)̸=∅}

≤
∑
i∈N

diamEi

≤ H1(K) + δ,

as required. □

Lemma 10.15. Let S ⊂ R2 be H1-measurable with H1(S) < ∞. Then for any
e ∈ S1, L1(πe⊥(De)) = 0.

Proof. Fix e ∈ S1. For any M ∈ N and t ∈ πe⊥(De) there exists an x ∈ De, rx > 0
and an interval e ∈ Ix ⊂ S1 with diam I < 1/10 such that

H1(S ∩ C(x, I) ∩B(x, r)) ≥MH1(rI).

Apply Lemma 6.1 to the intervals Jx = πe⊥(C(x, Ix)∩B(x, rx)) to obtain a disjoint
collection Jx1 , Jx2 , . . . ⊂ R such that

De ⊂
⋃
i∈N

5Jxi .
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Therefore

L1(De) ≤
∑
i∈N

5L1(Jxi)

≤ 5
∑
i∈N

H1(rIxi)

≤ 5

M

∑
i∈N

H1(S ∩ C(xi, Ixi) ∩B(xi, rxi))

≤ 5

M
H1(S),

where the final inequality follows from the disjointness of the sets C(xi, Ixi) ∩
B(xi, ri), i ∈ N. Since this is true for all M ∈ N, L1(De) = 0. □

Proof of Theorem 10.11 using Proposition 10.13. By the inner regularity of H1, it
suffices to prove the result for compact S. By definition, we have

{(x, e) ∈ S × S1 : e ̸∈ Hx ∪Dx} = {(x, e) : x ̸∈ He ∪De}.

Proposition 10.13 implies that the left hand expression has H1 × H1-measure zero
and so Fubini’s theorem implies that, for H1-a.e. e ∈ S1, H1(S \ He ∪ De) = 0.
Therefore, by Lemmas 10.14 and 10.15, πe⊥(S) = 0 for H1-a.e. e ∈ S1. □

Proof of Proposition 10.13. Fix R,M, ϵ > 0 and x ∈ S which satisfies the conclusion
of Corollary 10.9. That is,

(10.3) Θ∗,1(S ∩ C(x, I), x) ≥ c0H1(I)

for every interval I ⊂ S1. It suffices to show that H1(S1 \Hx(R)∪Dx(R,M, ϵ)) = 0.
In fact, we will show that, for any e ∈ S1,

Θ∗,1(Hx(R), e) > 0 or Θ1
∗(Dx(R,M, ϵ), e) > 0,

from which the result follows by the Lebesgue density theorem.
To this end, fix e ∈ S1 with Θ∗,1(Hx(R), e) = 0. Then for all sufficiently small

intervals I with e ∈ I ⊂ S1,

(10.4) H1(Hx(R) ∩ I) < c0H1(I)/4M.

Fix such an I. By Eq. (10.3), there exists r < R with

(10.5) H1(S ∩ C(x, I) ∩B(x, r)) ≥ c0rH1(I).

Note that (10.4) implies

(10.6) H1(Hx(r) ∩ I) < c0H1(I)/4M.

We will prove that

(10.7) H1(Dx(R,M, ϵ) ∩ I) ≥ c0H1(I)/4M.

Since I is any sufficiently small interval containing e, this implies

Θ1
∗(Dx(R,M, ϵ), e) ≥ c0/4M > 0

as required.
By (10.6) we may cover Hx(r) ∩ I by disjoint intervals I1, I2, . . . with∑

i∈N
H1(Ii) < c0H1(I)/4M
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(indeed, the disjointness of the intervals is shown in Exercise 10.6). By the definition
of Hx(r), we know that

(10.8) S ∩ C(x, I) ∩B(x, r) ⊂
⋃
i∈N

S ∩ C(x, Ii) ∩B(x, r).

Let G be those i ∈ N with

(10.9)
H1(S ∩ C(x, Ii) ∩B(x, r))

r
≥MH1(Ii).

Note that by (10.5) and (10.8),∑
i∈G

H1(S ∩ C(x, Ii) ∩B(x, r))

r
≥ H1(S ∩ C(x, I) ∩B(x, r))

r
− c0H1(I)

4

≥ 3c0H1(I)

4
.

That is, the cones associated to G :=
⋃

i∈G Ii cover a large proportion of S∩C(x, I)∩
B(x, r). Moreover, G ⊂ Dx(R,M, ϵ), because if ξ ∈ G then ξ ∈ Ii for some i ∈ G
which satisfies the definition of Dx(R,M, ϵ).

Thus, to show (10.7), it would be enough to bound H1(G) from below by a
multiple of H1(I). But this is not necessarily true: the intervals that form G could
be extremely thin compared to I. To accommodate this, we enlarge the intervals Ii
with i ∈ G as follows. For each i ∈ G enlarge Ii until (10.9) becomes an equality
or until Ii intersects another Ij . If the first possibility occurs then we still have
Ii ⊂ Dx(R,M, ϵ). If the second possibility occurs then we merge the two intervals;
since both sides of (10.9) are linear in I, and the boundary of each C(x, Ii) contains
no points of S, (10.9) remains true after the merge. By the same reasoning, both
sides of (10.9) are continuous under expanding I and consequently one of the two
possibilities must occur.

This results in a disjoint collection of intervals Ĩi for which (10.9) is an equality.
Moreover,

G =
⋃
i∈G

Ii ⊂
⋃
Ĩi

and, by construction, each Ĩi ∈ Dx(R,M, ϵ). Therefore

H1(Dx(r0, ϵ,M) ∩ I) ≥
∑

H1(Ĩi)

=
∑ H1(S ∩B(x, r) ∩ C(x, Ĩi))

rM

≥
∑
i∈G

H1(S ∩B(x, r) ∩ C(x, Ii))
rM

≥ 3c0H1(I)

4M
.

□

10.1. Exercises.

Exercise 10.1. Prove that the coordinate projections of the four corner Cantor set
K ⊂ R2 have Lebesgue measure zero.
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Exercise 10.2. A second proof that the four corner Cantor set is purely 1 unrecti-
fiable.

Suppose that f : R → R2 satisfies H1(f(R) ∩K) > 0.

(1) Prove that there exists x ∈ R that is a density point of f−1(K) such that
f ′(x) ̸= 0.

(2) Therefore, for sufficiently small r, f(x − r, x + r) is approximated by a line
segment of length 2rf ′(x) that is mostly contained in K. Derive a contra-
diction.

Exercise 10.3. Prove that the decomposition given in Lemma 10.3 is unique up to
Hn-null sets.

Exercise 10.4. Think about Corollary 10.9 and Proposition 10.13 in regard to the
four corner Cantor set.

Exercise 10.5. Let K ⊂ R2 be compact. Show that

{(x, e) : e ∈ Hx} and {(x, e) : e ∈ Dx}
are Borel subsets of K × S1.

Exercise 10.6. Show that in the definitions of Ln and Hn we may suppose the
covering intervals, respectively sets, may be chosen to be disjoint.

Exercise 10.7 (Open problem). For k ≥ 2, does there exist a compact purely 1-
unrectifiable S ⊂ R2 with H1(S) > 0 that intersects every line in at most k points?
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