
METRIC GEOMETRY, FALL 2018

EXERCISE 1, IDEAS FOR SOLUTIONS.

Exercise 1. If B is Borel, then Bc is also Borel. In addition, open sets U
with B ⊂ U and closed sets C with C ⊂ Bc are in bijective correspondence
by complementation. Moreover, if we have C = U c for such U,C, it follows
that

µ(Bc)− µ(C) = (µ(X)− µ(B))− (µ(X)− µ(U)) = µ(U)− µ(B).

It follows that inner regularity for B is equivalent in our situation with outer
regularity for Bc. Note that the equivalence proof here already relies on the
assumption µ(X) <∞.

Hence, as described in the exercise, it is enough to show that the set

F = {B ⊂ X Borel : B,Bc inner regular}
has all Borel sets, and this is done by showing that it is a σ-algebra containing
all closed sets of X. We note that it' clearl follows from the de�nition that
F is closed under conjugation.

i): Let B ⊂ X be closed. By a selection of C = B, it is obvious that
B is inner regular. We pick a descending sequence of open sets Ui, i ∈ Z+

for which B =
⋂

i Ui: for example Ui = Bd(B, 1/i), the ball of radius 1/i
around the set B. Since µ(X) < ∞, we have µ(U1) < ∞, and therefore
µ(B) = limi→∞ µ(Ui). Therefore, B is outer regular, and by the previous
considerations Bc is inner regular. It follows that F contains all closed sets
of X.

ii) We're told to let B1, B2 ∈ F and select Ci ⊂ Bi closed with µ(Bi\Ci) <
ε. We can compute

µ((B1 ∪B2) \ (C1 ∪ C2)) ≤ µ(B1 \ (C1 ∪ C2)) + µ(B2 \ (C1 ∪ C2))

≤ µ(B1 \ C1) + µ(B2 \ C2)

< 2ε

and, since (B1 ∩B2) \ (C1 ∩ C2) ⊂ (B1 \ C1) ∪ (B2 \ C2),

µ((B1 ∩B2) \ (C1 ∩ C2)) ≤ µ(B1 \ C1) + µ(B2 \ C2)

< 2ε.

It follows that B1 ∪ B2 and B1 ∩ B2 are inner regular. Since (B1 ∪ B2)
c =

Bc
1 ∩ Bc

2 and (B1 ∩ B2)
c = Bc

1 ∪ Bc
2, the same argument yields that their

complements are inner regular. It follows that F is closed under �nite unions
and intersections.

iii) Suppose now that B1, B2, . . . ∈ F . We pick D1 = B1, D2 = B2 ∩Dc
1,

D3 = B3 ∩Dc
2, and so on. By ii), we have Di ∈ F . It is also clear that Di

are disjoint and
⋃

iDi =
⋃

iBi.
iv) We now assume that B =

⋃∞
i=1Bi where Bi ∈ F , and by iii) we may

assume the Bi are disjoint. We then have
∑∞

i=1Bi = µ(B) <∞, so we �nd a

k ∈ Z+ for which µ(B \
⋃k

i=1Bi) =
∑∞

i=k+1 µ(Bi) < ε/2. Furthermore, since
1
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i=1Bi ∈ F as a �nite union of F-sets, we may pick a closed C ⊂

⋃k
i=1Bi

for which µ(
⋃k−1

i=1 Bi) − µ(C) < ε/2. Now C ⊂ B and µ(B) − µ(C) < ε.
Hence, countable unions of F-sets are inner regular.

v) Assume that B =
⋂∞

i=1Bi where Bi ∈ F . For every Bi, select a
closed Ci ⊂ Bi with µ(Bi \ Ci) < 2−iε, and let C =

⋂∞
i=1Ci. Note that

(
⋂∞

i=1Bi) \ (
⋂∞

i=1Ci) ⊂
⋃∞

i=1(Bi \ Ci). Hence, µ(B \ C) <
∑∞

i=1 2−iε = ε.
We obtain that countable intersections of F-sets are inner regular.

vi) Since (
⋃

iBi)
c =

⋂
iB

c
i , part v) implies that (

⋃
iBi)

c is inner regular.
Therefore, F is closed under countable unions. Since F contains all closed
subsets of X and is closed under complementation and countable unions, it
is a σ-algebra containing the Borel sets on X.

Exercise 2. Denote by X the whole domain of µ. Recall that for simplicity,
we assumed that µ(X) < ∞. We brie�y remark in the start that in the
de�nition

µ′(S) = inf{µ(B) : S ⊂ B ∈ Σ}
the in�mum is over a nonempty set, since Σ contains X which every S ∈ Σ′

is contained in.
i) Suppose S ∈ Σ′. By de�nition, we �nd Bi ∈ Σ for which S ⊂ Bi and

µ′(S) ≤ µ(B) ≤ µ′(S) + i−1. We let B =
⋂

iBi, and note that B ∈ Σ. Then
S ⊂ B so µ′(S) ≤ µ(B), but also µ(B) ≤ µ(Bi) ≤ µ′(S) + i−1 for all i.
Hence, µ′(S) = µ(B).

ii) We let Σ′′ be the collection of sets S′ ⊂ X for which C ′ ⊂ S′ ⊂ B′ for
some B′, C ′ ∈ Σ with µ(B′) = µ(C ′). It is straightforward to see that Σ′′

is closed under complements and countable unions, namely by considering
complements and unions of the respective B′ and C ′. Also it's easily seen
that Σ ⊂ Σ′′ and N ⊂ Σ′′. It follows that Σ′ ⊂ Σ′′, and in particular that
S ∈ Σ′′.

Hence, we �nd the desirable C ⊂ S ⊂ B with µ(C) = µ(B), which by
our simplifying assumption on �niteness of µ implies µ(B \ C) = 0. Since
S \ C ⊂ B \ C, it follows that S \ C ∈ N , and we may select N = S \ C.

iii) The only nontrivial part in showing that µ′ is a measure is to show that
it has additivity. However, we �rst remark that µ is increasing, as it's of use
in the proof. Note that when we select C ⊂ S ⊂ B with µ(C) = µ(B), this
remains true if we shrink B as long as the shrunken down B still contains C.
Hence, by i), we may assume µ′(S) = µ(B) = µ(C). Now, if S ⊂ S′, we pick
corresponding B,C,B′, C ′ and estimate µ′(S) = µ(C) ≤ µ(B′) = µ′(S′).

Next we prove additivity. If Si ∈ Σ′ are disjoint and we pick corresponding
Bi, Ci, the sets Ci are also disjoint. By increasingness we get

µ
(⋃

i

Si

)
≤ µ

(⋃
i

Bi

)
= µ

(⋃
i

Ci

)
≤ µ

(⋃
i

Si

)
.

Hence,

µ
(⋃

i

Si

)
= µ

(⋃
i

Ci

)
=
∑
i

µ(Ci) =
∑
i

µ(Si).

At this point, we now have that µ′ is an extension of µ.
iv) Suppose then that µ̃ extends µ to Σ̃ ⊃ Σ, and µ̃ is complete. We

note that by completeness of µ̃, we have N ⊂ Σ̃, so therefore Σ′ ⊂ Σ̃. Let
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S ∈ Σ′. Then by ii), S = C ∪ N where C ∈ Σ and N ∈ N . Since N is
contained in a nullset of Σ and µ̃ extends µ, we have µ̃(N) = 0, and therefore
µ̃(S) = µ(C) = µ′(S), which completes the proof.

Exercise 3. It is well known from basic topology that compact implies
complete. Moreover, since compactness of K implies that for a �xed ε > 0
the open cover {U(x, ε) : x ∈ K} has a �nite subcover (where U denotes the
open ball as in exercise 11), we obtain that compact implies totally bounded.

For the converse, suppose K is complete and totally bounded, and let
(xj) be a sequence in K. We construct subsequences (xij) inductively for

i = 1, 2, . . . as follows. Pick a �nite cover of K by balls of radius 1/i,
select a ball Bi+1 which has in�nitely many points xij , and let (xi+1

j ) be the

subsequence of (xij) contained in Bi+1. Then, let (yj) = (xjj) be the diagonal

subsequence. It clearly follows that (yj) is Cauchy, and therefore it has a
limit due to completeness.

Exercise 4. By Exercise 1, we know that µ is inner regular by closed sets.
Hence, it is enough to show that we have inner regularity by compact sets
for all closed subsets of X.

Let C ⊂ X be closed, and �x ε > 0. Separability means that we have a

dense sequence (xj) in X. We let Kj
i =

⋃j
k=1B(xk, 1/i) ∩ C for i, j ∈ Z+.

For each i, we have µ(C) = limj→∞ µ(Kj
i ), so we may select Ki = Kji

i so

that j1 < j2 < . . . and µ(C \Kji
i ) < 2−iε. Now let K = ∩∞i=1Ki.

SinceK is a closed subset of a complete space, it is complete. Furthermore,
K admits �nite covers by balls of radius 1/i for all i ∈ Z+, and therefore
also �nite covers by balls of radius 2/i centered at points of K. Hence, K
is totally bounded, and therefore also compact. Moreover, we have K ⊂ C
and µ(C \K) ≤

∑∞
i=1 µ(C \Ki) < ε. Hence, C is inner regular by compact

sets.
The σ-�nite case: Suppose (X,µ) is σ-�nite, and select an increasing

sequence Xi so that X =
⋃

iXi and Xi have �nite measure. We de�ne the
Borel measures µi on X by

µi(A) = µ(A ∩Xi)

(that is, µi is the restriction of the measure µ to the Borel set Xi). Now, for
every i, (X,µi) is a complete separable metric measure space, and further-
more µi(X) = µ(Xi) <∞.

Suppose that S ⊂ X is a Borel set. Then, as the sequence Xi of sets is
increasing, we have µi(S) → µ(S). We give here the case µ(S) < ∞ (the
other case µ(S) =∞ is similar). In this case, for every ε > 0, we can pick i
so that µi(S) ≥ µ(S)− ε/2. Applying the previously proven result on �nite
measures to (X,µi), we �nd a compact K ⊂ S so that µi(K) ≥ µi(S)− ε/2.
But now

µ(K) ≥ µi(K) ≥ µi(S)− ε/2 ≥ µ(S)− ε.
Hence, we may approximate S from inside by compact sets in µ.

Remark: It is possible that in the above σ-�nite case, closed balls do not
have �nite measure. To see this, pick X = R with the standard Euclidean
metric, and let µ be the counting measure on the rationals (ie. µ(A) is the
number of rational numbers in A). Then µ is a Borel measure on a separable
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metric measure space, and (R, µ) is σ-�nite by {R\Q, {q1}, {q2}, . . .}. While
this µ is inner regular by the above proof (also easy to see directly), it is
neither outer regular nor does it have �nite values on compact sets, and
therefore it is not Radon.

Exercise 5. By separability, we have a dense sequence (xj) in X. We build
our C inductively as follows. Start from C0 = ∅. Then, assuming Ci is
constructed, pick the xj with the smallest index for which xj ∈ B ∈ B for
some B with B ∩ (∪Ci) = ∅, and let Ci+1 = Ci ∪ {B}. Finally, whether this
process terminates or continues for all natural number indices, set C =

⋃
i Ci.

Clearly the resulting C is disjoint. Suppose then that C is not maximal:
that is, there is a B ∈ B with B ∩ ∪C = ∅. By density of (xj) we �nd a
xk ∈ B. However, now we obtain a contradiction, as xk /∈ ∪C, but at least
by step i = k, either B or some other ball of B containing xk would have
been added to Ci.

Remark: The above proof requires the axiom of countable choice ACω:
every countable collection of non-empty sets has a choice function. This,
however, is weaker that the full axiom of choice AC, which is equivalent to
Zorn's lemma.

Exercise 6. A simple counterexample is provided by e.g. the family of all
balls centered at zero in Rn: any disjoint subcover cannot contain more than
one ball B and the family contains balls larger than 5B.

Exercise 7. As in the hint, let B = B(x, r) be a ball, and use Exercise 5
to select a maximal disjoint subcollection C of balls of radius r/4 which are
centered at points of B. If there is a x ∈ B for which x /∈ 2B′ for all B′ ∈ C,
then B(x, r/4) ∩ B′ = ∅ for all B′ ∈ C, which contradicts maximality of C.
Hence, we obtain the desired Bi by in�ating the balls of C by a factor of 2 if
we can show a universal upper bound for the size of C.

If B′ ∈ C, since B′ is centered at a point of B and has radius r/4, we have
B ⊂ 8B′. Hence, µ(B′) ≥ C−3µ(8B′) ≥ C−3µ(B), where C is the doubling
constant. On the other hand, since C is disjoint and its sets are contained in
2B, we have µ(B) ≥ C−1µ(2B) ≥ C−1

∑
B′∈C µ(B′). Hence, C cannot have

more than C4 elements, which is a global upper bound of the desired type.

Exercise 8. Let B = B(x, r) ⊂ X be a closed ball. For every i ∈ Z+, we
can apply metric doubling inductively to cover B with �nitely many balls of
radius 2−ir. Also, by the same radius-doubling argument as in Exercise 4,
we may assume the balls have centerpoints in B, showing that B is totally
bounded. Hence, by Exercise 3, completeness of X and closedness of B, we
get that B is compact, and therefore X is proper.

For separability of X, �x a point x, let i, j ∈ Z+ take a ball B(x, 2j), and
use metric doubling to cover it by �nitely many balls of radius 2−i. By doing
this with the same x for every j, we obtain a countable cover of X by balls
of radius 2−i. By taking the centerpoints of these balls for all i, we obtain a
countable subset S of X which is easily seen to be dense.
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Exercise 9. Suppose B is a Vitali cover for an unbounded S. We take
bounded S1 ⊂ S2 ⊂ . . . so that S =

⋃∞
i=1 Si. We construct the disjoint

subcover C ⊂ B in an inductive manner.
First, B is a Vitali cover of S1, and by the bounded Vitali covering theorem

we obtain a countable disjoint subset C′1 so that µ(S1 \ ∪C′1) = 0. Since X
is doubling and S1 is bounded, S1 has �nite measure. Hence, we may pick a
�nite subset C′′1 ⊂ C′1 so that µ(S1 \ ∪C′′1 ) < 2−1. Select C1 = C′′1 .

Now, let B2 be the collection of all B ∈ B which do not intersect ∪C1.
Since C1 is �nite, ∪C1 is closed, and therefore every point of S2 \ ∪C1 has
positive distance to ∪C1. Due to this, B2 is a Vitali cover of S2 \ ∪C1. We
may again use bounded Vitali to pick a countable disjoint subset C′2 ⊂ B2 so
that µ(S2 \ ∪(C′2 ∪ C1)) = 0, and then take a �nite subset C′′2 ⊂ C′2 so that
µ(S2 \ ∪(C′′2 ∪ C1)) < 2−2. Select C2 = C′′2 ∪ C1.

Continuing this inductively, we obtain C1 ⊂ C2 ⊂ . . . so that every Ci is
disjoint and µ(Si \∪Ci) < 2−i. Set C =

⋃
i Ci. We claim that C is the desired

subset of B given by the Vitali covering theorem.
Disjointness of C is clear, so it remains to show that µ(S\∪C) = 0. Suppose

to the contrary that µ(S \∪C) > 0. Then we �nd a Si so that µ(Si \∪C) > 0.
But this is a contradiction, since µ(Si \ ∪C) doesn't decrease as i increases,
yet µ(Si \ ∪C) ≤ µ(Si \ ∪Ci) < 2−i for all i.

Exercise 10. Consider the function |f − q| for a q ∈ Q. Since f is inte-
grable, this function is locally integrable and non-negative, and therefore the
weak Lebesgue di�erentiation theorem says that

lim
r→0

1

µ(B(x, r))

∫
B(x,r)

|f(y)− q| dµ(y) = |f(x)− q|

for almost every x ∈ X. We let Lf be the set of points where the above
holds for every q ∈ Q. Since Q is countable, we have µ(X \ Lf ) = 0.

Now, let x ∈ Lf , and select a q ∈ Q for which |q − f(x)| < ε/2. We obtain

lim sup
r→0

1

µ(B(x, r))

∫
B(x,r)

|f(y)− f(x)|dµ(y)

≤ lim sup
r→0

1

µ(B(x, r))

∫
B(x,r)

(|f(x)− q|+ |f(y)− q|) dµ(y)

= |f(x)− q|+ lim sup
r→0

1

µ(B(x, r))

∫
B(x,r)

|f(y)− q| dµ(y)

= |f(x)− q|+ |f(x)− q|
< ε.

As this holds for arbitrary ε > 0, the claim follows.

Exercise 11. i) As described in the hint, a two-point space su�ces: let
X = {0, 1} with the standard metric, and let µ be the counting measure.
Every ball of X is nonempty, so the only possibilities are µ(B) = µ(2B) and
2µ(B) = µ(2B), giving us a doubling constant of 2. Also clearly the set
B(0, 1) \ U(0, 1) has measure 1.

ii) We show how to make an atomless version of the previous example. Let
d∞ be the metric on R2 induces by the sup-norm. Recall that balls B(x, r)
in d∞ are squares centered at x with width and height 2r.
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We select X = {0, 1} × R ⊂ R2 and d = d∞|X . Finally, we let µ be
the measure on X given by adding the 1-dimensional Lebesgue measures on
{0} × R and {1} × R. It follows that every B(x, r) has µ-measure either 2r
or 4r, depending on whether r is less than 1 or not. Hence, µ is doubling
with constant 4. Also, it's clear that µ(B((0, 0), 1) \ U((0, 0), 1)) = 2, and
that µ has no atoms.
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