METRIC GEOMETRY, FALL 2018
EXERCISE 1, IDEAS FOR SOLUTIONS.

Exercise 1. If B is Borel, then B¢ is also Borel. In addition, open sets U
with B C U and closed sets C' with C' C B¢ are in bijective correspondence
by complementation. Moreover, if we have C' = U€ for such U, C, it follows
that

u(B) = p(C) = (W(X) — u(B)) — (w(X) — u(U)) = p(U) — p(B).
It follows that inner regularity for B is equivalent in our situation with outer
regularity for B€. Note that the equivalence proof here already relies on the
assumption p(X) < oo.
Hence, as described in the exercise, it is enough to show that the set

F ={B C X Borel : B, B® inner regular}

has all Borel sets, and this is done by showing that it is a o-algebra containing
all closed sets of X. We note that it’ clearl follows from the definition that
F is closed under conjugation.

i): Let B C X be closed. By a selection of C = B, it is obvious that
B is inner regular. We pick a descending sequence of open sets U;,i € Z4
for which B = ("), U;: for example U; = By(B,1/i), the ball of radius 1/i
around the set B. Since p(X) < oo, we have u(U;) < oo, and therefore
w(B) = lim; o p1(U;). Therefore, B is outer regular, and by the previous
considerations B¢ is inner regular. It follows that F contains all closed sets
of X.

i1) We're told to let By, By € F and select C; C B; closed with u(B;\C;) <
€. We can compute

p((BrU B2) \ (C1UC2)) < pu(Bi\ (C1UCs)) + (B2 \ (C1U Ch))

< u(B1\ C1) 4+ u(B2\ Ca)
< 2¢

and, since (B1 N Bg) \ (C1NCs) C (B1\ C1) U (Ba\ Co),

p((B1 N Ba) \ (C1 N Cq)) < p(B1\ C1) + pu(Ba \ C2)
< 2e.

It follows that By U By and By N By are inner regular. Since (B; U Bg)¢ =
B{ N B and (B N By)¢ = Bf U BS, the same argument yields that their
complements are inner regular. It follows that F is closed under finite unions
and intersections.

i1i) Suppose now that By, Ba,... € F. We pick D1 = By, Dy = By N DY,
Ds = Bs N D§, and so on. By ii), we have D; € F. It is also clear that D;
are disjoint and |J; D; = |, Bi.

iv) We now assume that B = J;2, B; where B; € F, and by iii) we may
assume the B; are disjoint. We then have > 72, B; = u(B) < 00, so we find a
k € Z4 for which ;L(B\Uf:1 B;) = Y241 1(Bs) < €/2. Furthermore, since
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Ule B; € F as a finite union of F-sets, we may pick a closed C C Ule B;
for which u(UJf=! B;) — u(C) < €/2. Now C' C B and pu(B) — u(C) < «.
Hence, countable unions of F-sets are inner regular.

v) Assume that B = (72, B; where B; € F. TFor every B;, select a
closed C; C B; with u(B; \ C;) < 27%, and let C = (52, C;. Note that
(N2, B\ (NZ,C) € U2y (Bi\ Ci). Hence, u(B\C) < Y227 =e.
We obtain that countable intersections of F-sets are inner regular.

vi) Since (|J, B;)¢ = ); B{, part v) implies that (|J, B;)¢ is inner regular.
Therefore, F is closed under countable unions. Since F contains all closed
subsets of X and is closed under complementation and countable unions, it
is a o-algebra containing the Borel sets on X.

Exercise 2. Denote by X the whole domain of . Recall that for simplicity,
we assumed that p(X) < oco. We briefly remark in the start that in the
definition

p'(S) =inf{u(B):S C BeX}

the infimum is over a nonempty set, since X contains X which every S € ¥/
is contained in.

i) Suppose S € ¥/, By definition, we find B; € ¥ for which S C B; and
W (S) < u(B) < W/ (S)+i~t. Welet B =), B;, and note that B € ¥. Then
S C B so p/(S) < u(B), but also u(B) < u(B;) < p/(S) 4 i~ for all i.
Hence, p/(S) = u(B).

ii) We let X7 be the collection of sets S C X for which C' € S’ € B’ for
some B',C" € ¥ with u(B’") = u(C’). It is straightforward to see that X"
is closed under complements and countable unions, namely by considering
complements and unions of the respective B’ and C’. Also it’s easily seen
that ¥ C X" and N C ¥”. It follows that ¥’ C ¥”, and in particular that
S e’

Hence, we find the desirable C' C S C B with u(C) = p(B), which by
our simplifying assumption on finiteness of p implies u(B \ C) = 0. Since
S\ C C B\ C, it follows that S\ C' € N, and we may select N =S5\ C.

iii) The only nontrivial part in showing that x4 is a measure is to show that
it has additivity. However, we first remark that p is increasing, as it’s of use
in the proof. Note that when we select C' C S C B with u(C) = p(B), this
remains true if we shrink B as long as the shrunken down B still contains C.
Hence, by i), we may assume p/(S) = pu(B) = u(C). Now, if S C S’, we pick
corresponding B, C, B',C" and estimate p/(S) = pu(C) < pw(B') = p/(5).

Next we prove additivity. If S; € ¥/ are disjoint and we pick corresponding
B;, C;, the sets C; are also disjoint. By increasingness we get

M(LZJSi) SM(LZJBz‘) =M<LZJCi> SM(LZJSE)-
p(Us) =n(Uc) =X me) =3 uis).

At this point, we now have that x’ is an extension of .
i) Suppose then that i extends p to ¥ D X, and i is complete. We
note that by completeness of fi, we have N' C 3, so therefore ¥/ C X. Let
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S € ¥/. Then by ii), S = CUN where C € ¥ and N € N. Since N is
contained in a nullset of ¥ and fi extends u, we have fi(N) = 0, and therefore
a(S) = u(C) = 1/(S), which completes the proof.

Exercise 3. It is well known from basic topology that compact implies
complete. Moreover, since compactness of K implies that for a fixed € > 0
the open cover {U(z,¢) : x € K} has a finite subcover (where U denotes the
open ball as in exercise 11), we obtain that compact implies totally bounded.

For the converse, suppose K is complete and totally bounded, and let
(xj) be a sequence in K. We construct subsequences (:133) inductively for
i = 1,2,... as follows. Pick a finite cover of K by balls of radius 1/i,

select a ball B;;11 which has infinitely many points :Bé, and let (:U;H) be the

) contained in Bj;1. Then, let (y;) = (xg) be the diagonal

subsequence of (333
subsequence. It clearly follows that (y;) is Cauchy, and therefore it has a

limit due to completeness.

Exercise 4. By Exercise 1, we know that y is inner regular by closed sets.
Hence, it is enough to show that we have inner regularity by compact sets
for all closed subsets of X.

Let C' C X be closed, and fix € > 0. Separability means that we have a
dense sequence (z;) in X. We let K] = (J;_, B(zy,1/i)NC for i,j € Z.
For each 4, we have p(C) = lim; o u(K7), so we may select K; = K] so
that j1 < jo <...and u(C\ K7*) < 27%. Now let K =N, K;.

Since K is a closed subset of a complete space, it is complete. Furthermore,
K admits finite covers by balls of radius 1/i for all i € Z,, and therefore
also finite covers by balls of radius 2/i centered at points of K. Hence, K
is totally bounded, and therefore also compact. Moreover, we have K C C
and pu(C\ K) <> 72, u(C\ K;) < e. Hence, C is inner regular by compact
sets.

The o-finite case: Suppose (X,u) is o-finite, and select an increasing
sequence X; so that X = J; X; and X; have finite measure. We define the
Borel measures p; on X by

ni(A) = p(AN X;)

(that is, u; is the restriction of the measure i to the Borel set X;). Now, for
every i, (X, u;) is a complete separable metric measure space, and further-
more p;(X) = pu(X;) < oo.

Suppose that S C X is a Borel set. Then, as the sequence X; of sets is
increasing, we have p;(S) — p(S). We give here the case u(S) < oo (the
other case u(S) = oo is similar). In this case, for every € > 0, we can pick 4
so that p;(S) > u(S) — ¢/2. Applying the previously proven result on finite
measures to (X, i;), we find a compact K C S so that p;(K) > pi(S) —e/2.
But now

p(K) > pi(K) = pi(S) — /2 > p(S) —e.
Hence, we may approximate S from inside by compact sets in p.

Remark: 1t is possible that in the above o-finite case, closed balls do not
have finite measure. To see this, pick X = R with the standard Euclidean
metric, and let u be the counting measure on the rationals (ie. u(A) is the
number of rational numbers in A). Then pu is a Borel measure on a separable
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metric measure space, and (R, u) is o-finite by {R\Q, {q1}, {2}, ...}. While
this p is inner regular by the above proof (also easy to see directly), it is
neither outer regular nor does it have finite values on compact sets, and
therefore it is not Radon.

Exercise 5. By separability, we have a dense sequence (z;) in X. We build
our C inductively as follows. Start from Cy = (). Then, assuming C; is
constructed, pick the x; with the smallest index for which z; € B € B for
some B with BN (UC;) = 0, and let C;y1 = C; U {B}. Finally, whether this
process terminates or continues for all natural number indices, set C = |J, C;.

Clearly the resulting C is digjoint. Suppose then that C is not maximal:
that is, there is a B € B with BN UC = (. By density of (z;) we find a
x € B. However, now we obtain a contradiction, as xy ¢ UC, but at least
by step @ = k, either B or some other ball of B containing z; would have
been added to C;.

Remark: The above proof requires the aziom of countable choice AC,:
every countable collection of non-empty sets has a choice function. This,
however, is weaker that the full axiom of choice AC, which is equivalent to
Zorn’s lemma.

Exercise 6. A simple counterexample is provided by e.g. the family of all
balls centered at zero in R™: any disjoint subcover cannot contain more than
one ball B and the family contains balls larger than 5B5.

Exercise 7. As in the hint, let B = B(x,r) be a ball, and use Exercise 5
to select a maximal disjoint subcollection C of balls of radius r/4 which are
centered at points of B. If there is a € B for which z ¢ 2B’ for all B’ € C,
then B(z,r/4) N B’ = () for all B’ € C, which contradicts maximality of C.
Hence, we obtain the desired B; by inflating the balls of C by a factor of 2 if
we can show a universal upper bound for the size of C.

If B' € C, since B’ is centered at a point of B and has radius r/4, we have
B C 8B'. Hence, u(B') > C3u(8B') > C~3u(B), where C is the doubling
constant. On the other hand, since C is disjoint and its sets are contained in
2B, we have u(B) > C~'pu(2B) > C~1 Y /.o (B’). Hence, C cannot have
more than C* elements, which is a global upper bound of the desired type.

Exercise 8. Let B = B(z,7) C X be a closed ball. For every i € Z, we
can apply metric doubling inductively to cover B with finitely many balls of
radius 2% . Also, by the same radius-doubling argument as in Exercise 4,
we may assume the balls have centerpoints in B, showing that B is totally
bounded. Hence, by Exercise 3, completeness of X and closedness of B, we
get that B is compact, and therefore X is proper.

For separability of X, fix a point z, let 4, j € Z, take a ball B(z,2/), and
use metric doubling to cover it by finitely many balls of radius 27%. By doing
this with the same x for every j, we obtain a countable cover of X by balls
of radius 27%. By taking the centerpoints of these balls for all i, we obtain a
countable subset S of X which is easily seen to be dense.
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Exercise 9. Suppose B is a Vitali cover for an unbounded S. We take
bounded S C Sy C ... so that S = Ufil S;. We construct the disjoint
subcover C C B in an inductive manner.

First, B is a Vitali cover of S1, and by the bounded Vitali covering theorem
we obtain a countable disjoint subset C] so that u(S;\ UC}) = 0. Since X
is doubling and S is bounded, 57 has finite measure. Hence, we may pick a
finite subset C} C C{ so that u(S; \ UCY) < 271 Select C; = Cf.

Now, let By be the collection of all B € B which do not intersect UC;.
Since C; is finite, UC; is closed, and therefore every point of Sy \ UC; has
positive distance to UC;. Due to this, Bs is a Vitali cover of Sy \ UC;. We
may again use bounded Vitali to pick a countable disjoint subset C) C Ba so
that p(S2 \ U(C5UCy)) = 0, and then take a finite subset CJ C C) so that
M(SQ \ U(Cé’ U Cl)) < 272, Select Cy = Cé’ UCi.

Continuing this inductively, we obtain C; C Co C ... so that every C; is
disjoint and p(S; \UC;) < 27%. Set C = |J, C;. We claim that C is the desired
subset of B given by the Vitali covering theorem.

Disjointness of C is clear, so it remains to show that u(S\UC) = 0. Suppose
to the contrary that u(S\UC) > 0. Then we find a S; so that u(S; \UC) > 0.
But this is a contradiction, since p(S; \ UC) doesn’t decrease as i increases,
yet pu(S; \ UC) < u(S; \ UC;) < 27 for all 4.

Exercise 10. Consider the function |f —¢| for a ¢ € Q. Since f is inte-
grable, this function is locally integrable and non-negative, and therefore the
weak Lebesgue differentiation theorem says that

. 1 ) —
li s /B V) = dlauty) =15 ~d

for almost every x € X. We let Ly be the set of points where the above
holds for every ¢ € Q. Since Q is countable, we have (X \ Ly) = 0.
Now, let z € Ly, and select a ¢ € Q for which |¢ — f(x)| < /2. We obtain

_ 1
hrilj(l]lp W(B(z.) /B(w,r) |f(y) — f(z)]du(y)
, 1
< limsp s /B @ =l )~ ab duty

. 1
=|f(z) —q| + hr:l_%lpm

= [f(@) —ql +|f(z) — 4

< e.

/ @) — al du(y)
B(z,r)

As this holds for arbitrary € > 0, the claim follows.

Exercise 11. i) As described in the hint, a two-point space suffices: let
X = {0,1} with the standard metric, and let u be the counting measure.
Every ball of X is nonempty, so the only possibilities are u(B) = u(2B) and
2u(B) = p(2B), giving us a doubling constant of 2. Also clearly the set
B(0,1)\ U(0,1) has measure 1.

i1) We show how to make an atomless version of the previous example. Let
ds be the metric on R? induces by the sup-norm. Recall that balls B(z,7)
in do, are squares centered at x with width and height 2r.
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We select X = {0,1} x R C R? and d = dy|x. Finally, we let u be
the measure on X given by adding the 1-dimensional Lebesgue measures on
{0} x R and {1} x R. It follows that every B(x,r) has p-measure either 2r
or 4r, depending on whether 7 is less than 1 or not. Hence, p is doubling
with constant 4. Also, it’s clear that u(B((0,0),1)\ U((0,0),1)) = 2, and
that p has no atoms.
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