
AN INTRODUCTION TO RECTIFIABILITY IN METRIC SPACES

DAVID BATE

Throughout these notes, (X, d)will denote ametric space. By ameasure onX we
mean a countably sub-additive set function µ defined on the power set of X with
µ(∅) = 0. If µ is a measure on X then A ⊂ X is µ-measurable if

µ(E) = µ(E ∩A) + µ(E \A)
for all E ⊂ X . Any A ⊂ X with µ(A) = 0 is µ-measurable and the µ-measurable
subsets ofX form a σ-algebra. Wewill assume that all measures are Borel measures,
meaning that all Borel sets are measurable.

1. RECTIFIABLE SUBSETS OF A METRIC SPACE
The prospect of studying the concepts of geometric measure theory in an arbi-

trary metric space stems from the fact that the fundamental definitions, namely
Hausdorff measure and Lipschitz functions, do not rely on Euclidean structure.

For s, δ ≥ 0 and E ⊂ X , we write

Hs
δ(E) = inf

{∑
i∈N

diam(Si)
s : E ⊂

⋃
i∈N

Si, diamSi ≤ δ

}
and define the s-dimensional Hausdorff measure of E by

Hs(E) := sup
δ→0

Hs
δ(E).

Note that, sinceHs
δ(E) decreases as δ decreases, the supremum is in fact a limit as

δ → 0.
Recall that a map f : (X, d) → (Y, ρ) between metric spaces is L-Lipschitz, for

L ≥ 0, if
ρ(f(x), f(y)) ≤ Ld(x, y)

for all x, y ∈ X . The least such L is called the Lipschitz constant of f and will be
denoted by Lip(f). An injective Lipschitz function is bi-Lipschitz if its inverse is
also Lipschitz; it’s bi-Lipschitz constant is Lip(f) · Lip(f−1).
Definition 1.1. AHs-measurableE ⊂ X is n-rectifiable if, for each i ∈ N, there exist
Ai ⊂ Rn and a Lipschitz fi : Ai → X such that

Hn

(
E \

⋃
i∈N

fi(Ai)

)
= 0.

Note that we do not ask, as is often done in classical geometric measure theory,
that each Ai = Rn. This is to avoid topological obstructions in X . If X = Rm
equipped with a norm, then by the McShane extension theorem (see Exercise 1.1),
an equivalent definition is obtained if we require each Ai = Rn. More generally, if
X is a Banach space, the same conclusion is obtained using a Lipschitz extension
result of Johnson, Lindenstrauss, and Schechtman [14]. IfX is complete, an equiv-
alent definition of rectifiability is obtained if we require the Ai to be compact (see
Exercise 1.2).

This work was supported by the European Union’s Horizon 2020 research and innovation pro-
gramme (Grant agreement No. 948021).
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In classical geometric measure theory, geometric descriptions of rectifiable sets
fundamentally rely on Rademacher’s theorem.

Theorem 1.2 (Lebesgue n = 1, Rademacher n ≥ 2). A Lipschitz f : Rn → Rm is
differentiable Ln-a.e.

Analogously, we will see that the geometry of rectifiable subsets of a metric
space rely on a “metric Rademacher” theorem.

To beginwe consider the case that our Lipschitz function is defined on thewhole
of Rn.

1.1. Rectifiable curves.

Definition 1.3. Let γ : [a, b] → X be a Lipschitz curve. The variation of γ is defined
as

Var(γ) := sup
{
n−1∑
i=1

d(γ(ti), γ(ti+1))

}
,

where the supremum ranges over all
a ≤ t1 ≤ t2 ≤ . . . ≤ tn ≤ b.

Further, we define the metric speed of γ at t as

|γ̇| := lim
s→t

d(γ(s), γ(t))

|s− t|
whenever the limit exists.

We begin with the proof of the metric Rademacher theorem in the case n = 1,
and follow the proof from [3, Theorem 4.1.6].

Proposition 1.4 (Ambrosio [1], Kirchheim [16]). Let γ : [a, b] → X be Lipschitz. For
L1-a.e. t ∈ [a, b], |γ̇|(t) exists and

(1.1) Var(γ) =
∫ b

a

|γ̇|dL1.

Proof. Let xn, n ∈ N, be a dense subset of γ([a, b]) and , for each n ∈ N, let
φn(t) = d(γ(t), xn),

a 1-Lipschitz function φn : [a, b] → R. Thus, by Theorem 1.2, φ′n(t) exists, for each
n ∈ N and L1-a.e. t ∈ [a, b]. We set

m(t) = sup
n∈N

|φ′n(t)|

and will show that |γ̇|(t) = m(t) for L1-a.e. t ∈ [a, b].
Since each x 7→ d(x, xn) is 1-Lipschitz, we have

lim inf
s→t

d(γ(s), γ(t))

|s− t|
≥ lim inf

s→t

|φn(s)− φn(t)|
|s− t|

= |φ′n(t)|

for L1-a.e. t ∈ R. Taking the supremum over n ∈ N gives

(1.2) lim inf
s→t

d(γ(s), γ(t))

|s− t|
≥ m(t)

for L1-a.e. t ∈ R.
On the other hand, since the xn are dense, for any s, t ∈ R,

d(γ(s), γ(t)) = sup
n∈N

|d(γ(s), xn)− d(xn, γ(t))| = sup
n∈N

|φn(s)− φn(t)|.
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Further, since each φn is a Lip(γ)-Lipschitz real valued function on R,

d(γ(s), γ(t)) ≤ sup
n∈N

∫ t

s

|φ′n(τ)|dτ

≤
∫ t

s

m(τ)dτ.(1.3)

Finally, |φ′n(t)| ≤ Lip(γ) whenever it exists. Therefore |m(t)| ≤ Lip(γ) too and
hence is locally integrable. If t is a Lebesgue point ofm then

lim sup
s→t

d(γ(s), γ(t))

|s− t|
≤ m(t).

Combining this inequality with (1.2) completes the first part of the proof.
In order to prove (1.1), note that (1.3) gives

n−1∑
i=1

d(γ(ti+1), γ(ti)) ≤
∫ b

a

|γ̇|dL1

for any a ≤ t1, . . . , tn ≤ b. Taking the supremum over such partitions gives one
of the required inequalities for (1.1). For the opposite inequality, let ε > 0, h =
(b− a)/n and ti = a+ ih, for a choice of n ∈ N for which h ≤ ε. Then

1

h

∫ b−ϵ

a

d(γ(t+ h), γ(t))dt ≤ 1

h

∫ h

0

n−2∑
i=0

d(γ(τ + ti+1), γ(τ + ti))dτ

≤ 1

h

∫ h

0

Var(γ)dτ = Var(γ).

Thus, Fatou’s lemma and the arbitrariness of ε > 0 gives the other inequality. □
As in the classical case, the aboveproposition allowsus to find arc length parametri-

sations of rectifiable curves.
Corollary 1.5. Let γ : [0, 1] → X be Lipschitz and set l = Var(γ). There exists an
increasing φ : [0, l] → [0, 1] such that γ̃ := γ ◦ φ is 1-Lipschitz and satisfies | ˙̃γ|(t) = 1 for
L1-a.e. t ∈ [0, l].
Proof. For each t ∈ [0, 1] let

ψ(t) =

∫ t

0

|γ̇|dL1 = Var(γ|[0,t])

which is Lipschitz, increasing and satisfiesψ(0) = 0 andψ(1) = l. Note that ψ̇ = |γ̇|
almost everywhere. For s ∈ [0, l] define

φ(s) = inf{t ∈ [0, 1] : ψ(t) = s},
which is also increasing and satisfies ψ ◦ φ = id. If γ̃ = γ ◦ φ then (1.1) gives

d(γ̃(s), γ̃(t)) = d(γ(φ(s)), γ(φ(t)))

≤
∫ ϕ(t)

ϕ(s)

|γ̇|dL1

=

∫ ϕ(t)

ϕ(s)

ψ̇ dL1

=

∫ ψ(ϕ(t))

ψ(ϕ(s))

cardψ−1 dL1

=

∫ t

s

cardψ−1 dL1 = t− s,
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where the second equality follows from the (classical) area formula, and the final
equality holds since the set of x with cardψ−1(x) > 1 is at most countable (since
ψ−1(x) contains an open interval). Thus γ̃ is 1-Lipschitz.

Finally, let N be the null set where at least one of ψ or γ is not (metrically) dif-
ferentiable and letM = φ−1(N). Since ψ ◦φ = id,M ⊂ ψ(N) and hence, since ψ is
Lipschitz,M is a null set. Moreover, by the chain rule, for any t 6∈M ,

| ˙̃γ(t)| = |γ̇|(φ(t))|φ̇(t)| = |γ̇|(φ(t))| ˙(ψ−1)(φ(t))| = 1.

□
1.2. Higher dimensional rectifiable sets. The content of the remainder of this sec-
tion is due to Kirchheim [16].
Definition 1.6. Let f : Rn → X . A metric derivative of f at x is a seminorm |Df |(x)
on Rn such that

(1.4) lim
y,z→x

|d(f(y), f(z))− |Df(x)|(y − z)|
‖y − x‖+ ‖z − x‖

= 0.

Note that, if f : Rn → Rm is differentiable at x, then |Df |(x) = ‖Df(x)‖.
Theorem 1.7. Let f : Rn → X be Lipschitz. For Ln-a.e. x ∈ Rn, |Df |(x) exists.
Proof. Let um, m ∈ N, be a dense subset of Sn−1. By Proposition 1.4, for almost
every x ∈ Rn,

(1.5) |Df |(x)(um) := lim
t→0

d(f(x+ tum), f(x))

|t|
exists and is finite. Moreover, for such an x, |Df |(x) is Lip(f)-Lipschitz on

{uj : j ∈ N}.
Indeed, for any i, j ∈ N and ε > 0,

||Df |(x)(ui)− |Df |(x)(uj)| ≤
∣∣∣∣d(f(x+ tui), f(x))

|t|
− d(f(x+ tuj), f(x))

|t|

∣∣∣∣+ 2ε

≤ d(f(x+ tui), f(x+ tuj))

|t|
+ 2ε

≤ Lip(f)‖tui − tuj‖
|t|

+ 2ε

provided t is sufficiently small. Hence |Df |(x) may be extended to the whole of
Sn−1 (by Exercise 1.2). Further, we extend |Df |(x) to all of Rn by defining
(1.6) |Df |(x)(λu) = |λ||Df |(x)(u)
for any λ ∈ R and u ∈ Sn−1. In particular, by (1.5),

|Df |(x)(u) = lim
t→0

d(f(x+ tu), f(x))

|t|
for all u ∈ Rn.

Now observe that, by the Lebesgue density and Lusin theorems, it suffices to
prove the result for x a density point of a compact setK on which |Df | is continu-
ous. For such an x we show that

(1.7) lim
t→0

d(f(x+ tu), f(x+ tu′))

|t|
= |Df |(x)(u− u′)

uniformly for u, u′ ∈ B(0, 1). Fix ε > 0 and u, u′ ∈ B(0, 1). Since |Df | is (uni-
formly) continuous on K × B(0, 1), there exists r > 0 such that, for any y, z ∈
B(x, r) ∩K,

||Df |(y)(u)− |Df |(z)(u)| ≤ ε
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and ∣∣∣∣d(f(y + tu), f(y))

|t|
− |Df |(y)(u)

∣∣∣∣ ≤ ε

for all u ∈ B(0, 1) and |t| < r. Further, since x is a density point ofK, provided t is
sufficiently small, there exists y ∈ K ∩B(x+ tu′, εt). Thus∣∣∣∣d(f(x+ tu), f(x+ tu′))

|t|
− |Df |(x)(u− u′)

∣∣∣∣
≤
∣∣∣∣d(f(y + t(u− u′)), f(y))

|t|
− |Df |(y)(u− u′)

∣∣∣∣+ 2Lip(f)ε+ ε

≤ 2ε(1 + Lip(f)),
which gives (1.7). Note that (1.7) implies (1.4) and the fact that |Df |(x) satisfies the
triangle inequality. Combining this with (1.6) shows that |Df |(x) is a seminorm.

□

1.3. Lipschitz functions on arbitrary domains. Nextwe extendTheorem1.7 to the
case when f is only defined on a subset of Rn. To do this we use the Kuratowski
embedding.
Lemma 1.8 (Kuratowski embedding). Any separable metric space isometrically embeds
into `∞, the set of bounded sequences equipped with the supremum norm.

For the proof, see Exercise 1.3.
Corollary 1.9. Let S ⊂ Rn and f : S → X be Lipschitz. Then f is differentiable Ln-a.e.
in S. More precisely, for Ln-a.e. x ∈ S, there exists a unique norm |Df |(x) on Rn such
that (1.4) holds for y, z ∈ S.
Proof. Since S is separable and f is Lipschitz, f(S) is separable. We identify f(S)
with its isometric image in `∞ given by Lemma 1.8. For each n ∈ N, the function
fn : S → R defined by fn(s) = f(s)n is Lip(f)-Lipschitz. Using the McShane ex-
tension theorem (Exercise 1.1), we extend each fn to a Lip(f)-Lipschitz function
f̃n : Rn → R and define f̃ : Rn → `∞ by (f̃)n = fn for each n ∈ N. Then f̃ is Lip(f)-
Lipschitz and agrees with f on S. Therefore, if f̃ is differentiable at x, (1.4) holds
for f and y, z ∈ S. It remains to show uniqueness of the derivative, which holds at
any density point of S, see Exercise 1.4. □

Definition 1.10. Let f : S ⊂ Rn → X be Lipschitz. We say that x ∈ S is a regular
point of f if x is a density point of S, |Df |(x) exists and it is a norm. Standard
arguments show that the set of regular points of a Borel set S is a Borel subset of
S.
1.4. Properties of rectifiable subsets of a metric space.

Lemma 1.11. Let S ⊂ Rn be Borel, f : S → X Lipschitz and λ > 1. There exist Borel
sets Ei ⊂ S and norms ‖ · ‖i on Rn such that

• The set of regular points of f equals ∪iEi;
• For each i ∈ N, f : (Ei, ‖ · ‖i) → X is λ-bi-Lipschitz.

Proof. First note that the space of all norms on Rn is separable, in the following
sense. There exists a countable set of norms N such that, for any λ > 0 and any
norm ‖ · ‖ on Rn, there exists ‖ · ‖′ ∈ N such that

(1.8) 1

λ
‖v‖′ ≤ ‖v‖ ≤ λ‖v‖′ ∀v ∈ Rn.

This follows, for example, from the separability of all convex, compact symmetric
subset of Rn equipped with the Hausdorff metric. EnumerateN as ‖ · ‖1, ‖ · ‖2, . . ..
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Now define E1 to be those regular points of f for which (1.8) is satisfied with
‖ · ‖′ = ‖ · ‖1 and ‖ · ‖ = |Df |(x), a Borel set. Define E2 to be those regular points
of f not in E1 for which (1.8) is satisfied with ‖ · ‖′ = ‖ · ‖2 and ‖ · ‖ = |Df |(x),
a Borel set. Repeating inductively we obtain a Borel decomposition of the regular
points of f .

Now fix i ∈ N and x ∈ Ei. If y ∈ S is sufficiently close to x then
1

λ2
‖y − x‖i ≤

1

λ
Df(x)(y − x) ≤ d(f(y), f(x))

≤ λDf(x)(y − x) ≤ λ2‖y − x‖i.(1.9)
The map

R(x) := sup{r : extreme inequalities in (1.9) hold ∀y ∈ U(x, r) ∩ S}
is upper semi-continuous. Thus, wemay decomposeEi into countably many Borel
setsEji onwhichR(x) ≥ 1/j. By further decomposing eachEjj into sets of diameter
at most 1/j, we see that f is λ2-bi-Lipschitz on each set of the decomposition. □

The set of irregular (non-regular) points of a Lipschitz function are handled
with the following Sard type result.
Lemma 1.12. Let S ⊂ Rn be Borel and f : S → X Lipschitz. If I ⊂ S is the set of
irregular points of f , thenHn(f(I)) = 0.
Proof. The set of points where f is not differentiable has measure zero, as is the
set of non-density points of S. The image of these points under f has Hausdorff
measure zero (see Exercise 1.5). Therefore it suffices to prove that the set I of points
where |Df |(x) exists but is not a norm satisfiesHn(f(I)) = 0. Second, it suffices to
prove the result for S bounded, say S ⊂ B(0, 1).

Fix ε > 0. If x ∈ I then there exists vx ∈ Sn−1 with |Df |(x)(vx) = 0. That is,
there exists rx > 0 such that
(1.10) |d(f(y), f(z))− |Df |(x)((y − z) · v⊥x )| ≤ ε(‖y − x‖+ ‖z − x‖)
for all y, z ∈ B(x, rx) ∩ S. In particular, f(B(x, r) ∩ I) is contained within the εr
neighbourhood of

f(B(x, r) ∩ I ∩ (x+ v⊥x ))

for all 0 < r < rx. Therefore, f(I∩B(x, r)) is containedwithin [ε−(n−1)]many balls
of radius εr. In particular,
(1.11) Hn

Lip(f)ϵr(f(I ∩B(x, r))) ≤ [ε−(n−1)](2εr)n ≤ 4nεrn.

Fix δ > 0. Consider the collection of balls B of the form B(x, r) with x ∈ I and
r < min{rx, δ/Lip(f)ε}. Then B is a Vitali cover of I . Applying the Vitali covering
theorem1 gives a disjoint sub-collection B(x1, r1), B(x2, r2), . . . with

Ln
(
I \
⋃
i∈N

B(xi, ri)

)
= 0.

Applying (1.11) to each B(xi, ri) gives

Hn
δ (f(I)) ≤

∑
i∈N

Hn
δ (f(I ∩B(xi, ri))) ≤ 4n

∑
i∈N

εrni ,

However, the B(xi, ri) are disjoint subsets of B(0, 1 + δ) and so
∑
i r
n
i ≤ (1 + δ)n.

Since ε > 0 is arbitrary, this shows thatHn
δ (f(I)) = 0 and henceHn(f(I)) = 0. □

Combining Lemmas 1.11 and 1.12 gives the following.

1We will prove the Vitali covering theorem for doubling measures in Theorem 3.9.
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Corollary 1.13. Let X be complete and E ⊂ X n-rectifiable. For any ε > 0 there exist
norms ‖ · ‖i on Rn, Borel setsAi ⊂ Rn and (1+ ε)-bi-Lipschitz maps fi : (Ai, ‖ · ‖i) → X
such that

Hn

(
E \

⋃
i∈N

fi(Ai)

)
= 0.

Remark 1.14. FromCorollary 1.13 one can deduce area formulae for rectifiable met-
ric spaces, see [16, Theorem 7] and [2, Theorem 5.1, Theorem 8.2].

We conclude this section with Kirchheim’s theorem on the local structure of
rectifiable metric spaces.

Theorem 1.15. Let X be complete and E ⊂ X be n-rectifiable. For Hn-a.e. x ∈ E there
exists a norm ‖ · ‖x on Rn, a map φx : E → Rn and a compact Ax ⊂ E such that

(1.12) lim
r→0

Hn(B(x, r) ∩Ax)
(2r)n

= 1

and

(1.13) lim sup
r→0

{∣∣∣∣1− ‖φx(y)− φx(z)‖x
d(y, z)

∣∣∣∣ : y 6= z ∈ Ax ∩B(x, r)

}
= 0.

Proof. It suffices to prove the result for E = f(S), for S ⊂ Rn Borel and f : S → X
Lipschitz. For each k ∈ N let S = ∪i∈NE

k
i and norms ‖ · ‖ki be obtained from

Lemma 1.11 for some decreasing λk > 1with λk → 1. LetGki be the set of Lebesgue
density points of each Eki . If S′ = ∩k ∪i Gki , we claim the conclusion holds for any
f(a) ∈ f(S′), which suffices since Hn(S \ S′) = 0.

To this end, for each k ∈ N let i(k) ∈ N be such that a ∈ Gki . The conclusion of
Lemma 1.11 implies that

1

λkλk+1
‖ · ‖k ≤ ‖ · ‖k′ ≤ λkλk+1‖ · ‖k

for all k′ ≥ k ≥ 1. Therefore, there exists a limiting norm ‖ · ‖x = limk→∞ ‖ · ‖k.
Moreover,

1

λkλk+1
‖y − z‖x ≤ d(f(y), f(z)) ≤ λkλk+1‖y − z‖x

for all y, z ∈ E
i(k)
i . Since a is a density point of each Ei(k)i , there exist rk → 0 such

that
Hn(B(a, r) ∩ Ei(k)i ) > (1− 1/k)Hn(B(a, r))

for all 0 ≤ r < rk. We set Ak = E
i(k)
i ∩ B(a, rk) \ B(a, rk+1). By reducing the

measure of each Ak slightly, we may suppose that they are compact. Therefore,
A := ∪kAk ∪ {a} is compact and

(1.14) Hn(B(a, r ∩A))
Hn(B(a, r))

→ 1 as r → 0

by construction.
Finally, define Ax = f(A), a compact set. Lemma 1.11 and (1.14) imply (1.12).

Also define φx = f−1 on Ax, so that Lemma 1.11 implies (1.13). □

Remark 1.16. Theorem 1.15 allows us to define a tangent norm of E at almost every
x ∈ E as (an equivalence class in the Banach-Mazur compactum of) ‖ · ‖x. See [16,
Definition 10].



8 DAVID BATE

Corollary 1.17. If E ⊂ X is n-rectifiable withHn(E) <∞ then

Θn(E, x) := lim
r→0

Hn(B(x, r) ∩ E)

(2r)n
= 1

forHn-a.e. x ∈ E.

Proof. The fact that

Θn∗ (E, x) := lim inf
r→0

Hn(B(x, r) ∩ E)

(2r)n
≥ 1

is given by Theorem 1.15. The fact that

(1.15) Θn,∗(E, x) := lim sup
r→0

Hn(B(x, r) ∩ E)

(2r)n
≤ 1

forHn(E) <∞ is a standard property of Hausdorff measure, see Lemma 3.11. □

1.5. Exercises.

Exercise 1.1. Suppose that F is a collection of L-Lipschitz functions f : X → R.
(1) Show that supF : X → R defined by

supF(x) = sup{f(x) : f ∈ F}

is also L-Lipschitz.
(2) Let A ⊂ X and f : A→ R be L-Lipschitz. Show that f̃X → R defined by

f̃(x) = sup{f(a)− Ld(x, a) : a ∈ A}

is an L-Lipschitz extension of f .
(3) Show that f̃ is the (pointwise) smallest L-Lipschitz extension of f to X .
(4) What can be said about f̂ : X → R defined by

f̂(x) = inf{f(a) + Ld(x, a) : a ∈ A}?

Exercise 1.2. LetX,Y me metric spaces, A ⊂ X and f : A→ Y Lipschitz. Suppose that
Y is complete.

(1) For any x ∈ Ā, the closure ofA, show that there exists a unique yx ∈ Y such that,
if xn → x, then f(xn) → y.

(2) Extend f to Ā by defining f(x) = yx. Show that f : Ā→ R is Lip(f)-Lipschitz.

Exercise 1.3. LetX be a separable metric space and xn a countable dense subset ofX . For
each x ∈ X define the sequence ι(x) ∈ `∞ by

ι(x)n = d(x, xn)− d(xn, x0).

(1) For any x ∈ X , show that ι(x) is bounded by d(x, x0).
(2) Show that ι is 1-Lipschitz.
(3) By considering xnk

→ x′ ∈ X , show that ι is an isometry.

Exercise 1.4. (1) Let f : S ⊂ Rn → R be Lipschitz and x a density point of S. Show
that there can be at most one Df(x) ∈ L(Rn,R) such that

lim
S∋y→x

|f(y)− f(x)−Df(x)(y − x)|
‖y − x‖

= 0.

Hint: being linear, Df(x) is determined by the behaviour of f near to the coordi-
nate axes. More precisely, if y → x with

‖πe⊥i (y − x)‖
‖y − x‖

→ 0,
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show that
Df(x)(ei) = lim

y→x

f(y)− f(x)

‖y − x‖
.

(2) The situation is less simple for norms. Give an example of two (distinct) norms
that agree on the coordinate axes.

(3) Let f : S ⊂ Rn → X be Lipschitz and x ∈ S. Suppose v ∈ Sn−1 and y → x
with

‖πv⊥(y − x)‖
‖y − x‖

→ 0.

Show that, if it exists,

|Df |(x)(v) = lim
y→x

d(f(y), f(x))

‖y − x‖
.

(4) Prove that the metric derivative of f (if it exists) is unique at any density point of
S.

Note that Ln-a.e. x ∈ S is a density point of S even if S is not measurable, see Exer-
cise 3.8.

Exercise 1.5. Let f : X → Y be a Lipschitz function between two metric spaces. For
S ⊂ X and s ≥ 0 show that

Hs(f(S)) ≤ Lip(f)sHs(S).

2. SUFFICIENT CONDITIONS FOR RECTIFIABILITY: THE 1-DIMENSIONAL CASE
Classically, one uses the ambient structure of Euclidean space, in particular the

characterisation of rectifiability in terms of Lipschitz graphs, in order to establish
sufficient conditions for rectifiability in terms of cones, see [18, Section 15]. No-
tably, this is the starting point for the proof of the Besicovitch–Federer projection
theorem. Since this structure is not available to us, we introduce sufficient condi-
tions on a set E that rely, in some sense, on the topology of E.

We begin with a classical result of Eilenberg and Harrold [11] which covers the
case n = 1.

Lemma 2.1. If E ⊂ X is connected and 0 < r < diam(E)/2 then
H1(E ∩B(x, r)) ≥ r ∀x ∈ E.

Proof. Pick x ∈ E and let φ(y) = d(y, x) for all y ∈ E. Then φ is 1-Lipschitz and so
H1(φ(E ∩B(x, r))) ≤ H1(E ∩B(x, r)).

On the other hand, φ(E∩B(x, r)) contains an interval of length r (see Exercise 2.1),
giving the required lower bound. □

Definition 2.2. Let E ⊂ X , x, y ∈ E and ε > 0. We say that x, y are ε-connected in
E if there exist x1, . . . , xn ∈ E with x1 = x and xn = y such that d(xi, xi+1) ≤ ε for
each 1 ≤ i < n. In this case, {x1, . . . , xn} is called an ε-chain joining x to y in E.

Proposition 2.3. Let C ⊂ X be a compact and connected metric space withH1(C) <∞.
Then C is connected by injective rectifiable curves.

Proof. Note that the statement of the proposition is invariant under isometries.
Therefore, by Lemma 1.8, we may suppose that C ⊂ `∞. This gives us linear struc-
ture that we will use to construct Lipschitz curves.

For ε > 0 and x ∈ C let
C ′ = {y ∈ C : x, y are ε-connected in C}.
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Then C ′ is both open and closed in C (see Exercise 2.2) and hence C ′ = C. That is,
for every x, y ∈ C, there exists an ε-chain {x0, . . . , xn} joining x to y. Moreover, by
removing points from the chain if necessary, we may suppose that

d(xi, xj) ≥ ε whenever |i− j| > 1.

This implies that distinct ballsB(xi, ε/2) andB(xj , ε/2) are a positive distance apart
whenever i, j are both even or both odd. Therefore

H1(C) ≥
∑
i odd

H1(C ∩B(xi, ε/2)).

and hence, if ε < diam(C), Lemma 2.1 gives

H1(C) ≥
∑
i odd

ε

2
.

Combining this with the analogous inequality for even indices gives

2H1(C) ≥ n
ε

2
.

Now, because C ⊂ `∞, we can construct a 1-Lipschitz curve
γϵ : [0, 4H1(C)] → X

connecting x to y by joining each xi to xi+1 using line segments. In particular, γϵ
lies in the ε-neighbourhood of C. Since C is compact and the γϵ are equicontinu-
ous, Arzelà-Ascoli gives a Lipschitz curve γ joining x to y in C. By shortening γ if
necessary, it may be taken to be injective, see Exercise 2.4 □

Theorem 2.4. LetC be a compact, connected metric space withH1(C) <∞. There exists
a surjective 1-Lipschitz curve γ : [0, 2H1(C)] → C.
Proof. Throughout the proof wewill make extensive use of Proposition 2.3 without
explicit reference.

Since C is compact, there exist x0, y0 ∈ C with d(x, y) = diamC =: d0. Let
γ0 ⊂ C be an injective, Lipschitz curve connecting x to y. We inductively construct
a sequence of curves γn ⊂ C such that

• For each i < n, γn ∩ γi is a single point xn;
• The other end point yn of γn satisfies

dn := d

(
yn,

⋃
i<n

γi

)
= max

x∈C
d

(
x,
⋃
i<n

γi

)
.

If dn = 0 for some n then we have finitely many curves and stop. Otherwise, by
Lemma 2.1,H1(γn) ≥ dn and so∑

i≥0

di ≤
∑
i≥0

H1(γi) ≤ H1(C).

For each i ∈ N set li = H1(γi). By Exercise 2.4, we know that the arc length
parametrisation of γi is defined on an interval of length li. We construct curves Γi
as follows. On [0, l0] define Γ0 to be the arc length parametrisation of γ0 and on
[l0, 2l0] let Γ0 equal the reverse parametrisation of γ0. Thus Γ0 is a loop, beginning
at x0, travelling to y0 and returning to x0. Next, we extend Γ0 to a curve Γ1 by
adding a loop that begins at x1 ∈ γ travels along γ1 to y1, and then returns to x1 by
travelling along γ1 in reverse. If we use the arc length parametrisation of γ1, then
Γ1 is defined on [0, 2(l0 + l1)]. Inductively we construct Γn, a 1-Lipschitz closed
loop on [0, 2(

∑
i≤n li)] whose image contains the image of each γi, 0 ≤ i ≤ n.

After extending each Γn to be constant on (
∑
i≤n li,

∑
i≥0 li], we note that Γn is a

Cauchy sequence in C([0,
∑
i≥0 li], C). Indeed, for any t ∈ [0,

∑
i≥0 di] and n < m,
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d(Γn(t),Γm(t)) ≤ 2
∑m
i=n li. Thus Γn converges to some γ uniformly. In particular,

γ is 1-Lipschitz.
Finally, by construction,

C ⊂ B (Γn, dn) ⊂ B

(⋃
i∈N

Γi, dn

)
,

for each n ∈ N. Since dn → 0, C is contained in the closure of γ. Finally, since γ is
compact, we have C = γ. □

Remark 2.5. Note that, except for countably many x ∈ C, γ−1(x) is at most 2 points.
This is sharp, see Exercise 2.5.

2.1. Exercises.

Exercise 2.1. Let E ⊂ X be connected, x ∈ E and 0 < r < diam(E)/2. For φ(y) =
d(x, y), show that φ(E ∩B(x, r)) contains an interval of length r.

Exercise 2.2. Show that C ′ in the proof of Proposition 2.3 is open and closed in C.

Exercise 2.3. Let C be connected with H1(C) < ∞. Show that C is totally bounded.
Hint: For 0 < ε < diam(C) suppose we inductively choose

xn ∈ C \
n−1⋃
i=0

B(xi, ε).

whenever the set is non-empty. Use Lemma 2.1 to show that the process terminates after
finitely many steps.

Therefore, in the hypotheses of Proposition 2.3, it would suffice to assume that C is a
complete and connected metric space withH1(C) <∞.

Exercise 2.4. Let γ0 : [0, l0] → X be Lipschitz and define

N = {(s, t) ∈ [0, l0]
2 : s < t, γ(s) = γ(t)}.

(1) Show thatm = max{|s− t| : (s, t) ∈ N} exists.
(2) If γ0 is not injective thenm > 0. Let s < t ∈ [0, l0] with |s− t| = m and define

a Lipschitz curve γ1 : [0, l0 −m] → X by cutting out the loop defined by γ|[s,t].
Note that γ1 has the same end points as γ0.

(3) Assuming this process never terminates, inductively construct curves

γn : [0, ln] → X

with the same end points as γ0 and let l = limn→∞ ln. Show that γn|[0,l] con-
verges uniformly to some γ.

(4) Prove that γ is injective.
(5) Suppose that γ : [0, l] → X is injective. Prove that

H1(γ([0, l])) =

∫ l

0

|γ̇|dL1.

Exercise 2.5. For n ∈ N give an example of a compact connected metric space Xn with
H1(Xn) < ∞ such that, for any γ as in the conclusion of Theorem 2.4, there exists x
with card γ−1(x) = n. Give an example X for which infinitely many points have infinite
preimage.
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3. SUFFICIENT CONDITIONS FOR RECTIFIABILITY: HIGHER DIMENSIONS
David [10] gives conditions on an n-dimensional metric space X that ensures

that a Lipschitz function f : X → Rn may be decomposed into an explicit number
of bi-Lipschitz pieces. This result was one of the corner stones of the development
of uniform (or quantitative) rectifiability.

In this section we prove the following theorem, which shows that a condition
similar to David’s provides sufficient conditions for rectifiability. Note, however,
that the proof of this qualitative case is substantially simpler than the quantitative
results of David. To state our theorem, we require the following definitions.

Definition 3.1. For s > 0 and A ⊂ X , the upper and lower s-dimensional Haus-
dorff densities are defined as

Θ∗,s(A, x) := lim sup
r→0

Hs((B(x, r) ∩A))
(2r)s

and
Θs∗(A, x) := lim inf

r→0

Hs((B(x, r) ∩A))
(2r)s

.

Theorem 3.2. Let f : X → Y be Lipschitz,Hs(X) <∞ and, forHs-a.e. x ∈ X , suppose
that

(3.1) lim sup
r→0

Hs(B(f(x), λxr) \ f(B(x, r)))

(2λxr)s
<

1

2
Θs∗(Y, f(x))

for some 0 < λx ≤ 1. Then there exists a countable Borel decomposition X = N ∪
⋃
iXi

withHs(N) = 0 such that each f |Xi
is bi-Lipschitz.

First we demonstrate a key idea of David [10] that we will use in the proof of
Theorem 3.2.

Definition 3.3. For 0 < κ < λ ≤ 1 and 0 < ξ < 1, a function f : V ⊂ X → Y
satisfies the condition D(λ, κ, ξ) on a set S ⊂ V if, for all r < diamS,

Hs(B(f(x), λr) \ f(V ∩B(x, r))) <
1

2
ξHs(B(f(x), κr)).

Lemma 3.4. Let 0 < κ < λ ≤ 1, 0 < ξ < 1 and suppose f : V ⊂ X → Y satisfies
D(λ, κ, ξ) on S ⊂ V . Let x, y ∈ S, set r = d(x, y)/4 and suppose

Hs(B(f(x), κr)) ≥ Hs(B(f(y), κr)).

If
(3.2) Hs(f(V ∩B(x, r)) ∩ f(V ∩B(y, r))) ≤ (1− ξ)Hs (B (f(x), κr))

then

(3.3) ρ(f(x), f(y)) ≥ (λ− κ)
d(x, y)

4
.

Proof. Suppose that (3.3) does not hold. Then by the triangle inequality,
B (f(x), λr) ∩B (f(y), λr) ⊃ B (f(x), κr) .

Combining this with D(λ, κ, ξ) negates (3.2). Indeed, it gives
Hs(f(V ∩B(x, r)) ∩ f(V ∩B(y, r))) > Hs (B (f(x), λr) ∩B (f(y), λr))

− ξHs (B (f(x), κr))

≥ (1− ξ)Hs (B (f(x), κr)) .

□
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The remainder of the proof of Theorem 3.2 involves measure theoretic argu-
ments to show that the domain of f may be decomposed into a countable number
of sets satisfying D(λ, κ, ξ).

Wefirst prove some standard covering theorems andproperties of theHausdorff
measure. We will use B(x, r) to denote the closed ball in a metric spaceX centred
at x ∈ X with radius r ≥ 0. Since the centre and radius of a ball are not uniquely
defined by its elements, formally by a “ball” we mean a pair (x, r) ∈ X × (0,∞),
but in practice we mean the set of its elements. For a ball B and λ > 0we write λB
for the ball with the same centre as B and λ times the radius.

Lemma 3.5 (Vitali covering lemma). LetX be a metric space and B an arbitrary collec-
tion of closed balls of uniformly bounded radii. There exists a disjoint sub-collectionB′ ⊂ B
such that any B ∈ B intersects a ball B′ ∈ B′ with

radB′ ≥ radB/2.

In particular, ⋃
B∈B′

5B ⊃
⋃
B∈B

B.

Proof. For each n ∈ Z let

Bn = {B ∈ B : 2n ≤ radB < 2n+1}.

Since the balls in B have uniformly bounded radii, the Bn are empty for all n > N ,
for some N ∈ N. Let B′

N be a maximal disjoint sub-collection of BN . That is, the
elements of B′

N are disjoint elements of BN and if B ∈ BN , there exists a B′ ∈ B′
N

with B ∩ B′ 6= ∅. (In general such a maximal collection exists by Zorn’s lemma.
See also Exercise 3.2.) Let B′

N−1 be a maximal collection such that B′
N ∪ B′

N−1 is a
disjoint collection. Repeat this for each i ∈ N, obtaining a maximal collection B′

N−i
such that B′

N ∪ . . . ∪ B′
N−i is a disjoint collection, and set B′ =

⋃
n≤N B′

n.
Now suppose thatB ∈ B, sayB ∈ Bn. Then by construction there existsB′ ∈ B′

m

for somem ≥ n with B ∩B′ 6= ∅. In particular, radB′ ≥ radB/2.
The final statement of the lemma follows from the triangle inequality. □

Definition 3.6. LetX be ametric space and S ⊂ X . AVitali cover of S is a collection
B of closed balls such that, for each x ∈ S and each ε > 0, there exists a ball B ∈ B
with radB < ε and x ∈ B.

Proposition 3.7. Let X be a metric space, S ⊂ X and suppose that B is a Vitali cover of
S. Then there exists a disjoint B′ ⊂ B such that, for every finite I ⊂ B′,

S \
⋃
B∈I

B ⊂
⋃

B∈B′\I

5B.

In particular, if B′ = {B1, B2, . . .} is countable (for example, if X is separable), then

S \
n⋃
i=1

Bi ⊂
⋃
i>n

5Bi

for each n ∈ N.

Proof. Note that wemay suppose B consists of balls with uniformly bounded radii.
Let B′ be a disjoint sub-collection of B obtained from Lemma 3.5. If I ⊂ B′ is finite
then

C :=
⋃
B∈I

B
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is closed. Therefore, if x ∈ S \ C, since B is a Vitali cover of S, there exists B ∈ B
with x ∈ B such that B ∩ C = ∅. However, B must intersect some B′ ∈ B′ with
radB′ ≥ radB/2, and so x ∈ 5B′. That is, x belongs to⋃

B∈B′\I

5B,

as required. □

Definition 3.8. ABorel measure µ on ametric spaceX is a doubling measure if there
exists a Cµ ≥ 1 such that

0 < µ(2B) ≤ Cµµ(B) <∞
for all balls B ⊂ X .

Of course, we cannotmention covering theoremswithout proving the Vitali cov-
ering theorem.

Theorem 3.9 (Vitali covering theorem). Let µ be a doubling measure on a metric space
X and let B be a Vitali cover of a set S ⊂ X . There exists a countable disjoint B′ ⊂ B such
that

µ

(
S \

⋃
B∈B′

B

)
= 0.

Proof. First note that it suffices to prove the result for S bounded, say S is contained
in some ball B̃. We may also suppose that each B ∈ B is a subset of 2B̃.

Let B′ be a disjoint sub-collection of B obtained from Proposition 3.7. Note that
B′ is countable. Indeed, for each m ∈ N, at most mµ(2B̃) balls B ∈ B′ can satisfy
µ(B) > 1/m.

Enumerate B′ = {B1, B2, . . .}. Since the Bi are disjoint subsets of 2B̃,∑
i>n

µ(Bi) → 0.

By the conclusion of Proposition 3.7,

S \
n⋃
i=1

Bi ⊂
⋃
i>n

5Bi

for each n ∈ N. Since µ is doubling, µ(5Bi) ≤ C3
µµ(Bi) for each i ∈ N and so

µ

(
S \

n⋃
i=1

Bi

)
≤ C

∑
i>n

µ(Bi) → 0,

as required. □

Corollary 3.10. Let µ be a doubling measure on X and S ⊂ X . Then for µ-a.e. x ∈ S,
µ(S ∩B(x, r))

µ(B(x, r))
→ 1 as r → 0.

Such an x is called a density point of x.

See Exercise 3.8 for the proof.
Next we apply the covering theorems to Hausdorff measure.

Lemma 3.11. Suppose that s > 0 and A ⊂ X withHs(A) <∞. Then
2−s ≤ Θ∗,s(A, x) ≤ 1

forHn-a.e. x ∈ A.
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Proof. The set of x ∈ AwithΘ∗,s(A, x) < 2−s is a countable union countable of the
sets

Sδ := {x ∈ A : Hs(A ∩B(x, r)) < (1− δ)rs ∀0 < r < δ}.
Thus, for the first inequality, it suffices to show that Hs(Sδ) = 0 for all δ > 0.

Fix δ, ε > 0. We may cover Sδ by sets E1, E2, . . . such that, for each i ∈ N,
diamEi < ε, Sδ ∩ Ei 6= ∅ and∑

i∈N

diamEsi ≤ Hs(Sδ) + ε.

For each i ∈ N let xi ∈ Sδ ∩ Ei and set ri = diamEi. Then

Hs(Sδ) ≤
∑
i∈N

Hs(Sδ ∩ Ei) ≤
∑
i∈N

Hs(A ∩B(xi, ri))

≤ (1− δ)
∑
i∈N

diamEsi ≤ (1− δ)(Hs(Sδ) + ε).

Since ε > 0 is arbitrary and δ > 0, this impliesHs(Sδ) = 0, as required.
For the second inequality, sinceHs is Borel regular (see Exercise 3.1), it suffices

to assume that A is Borel. As before, given δ > 0, it suffices to prove that
S := {x ∈ A : Θ∗,s(A, x) > 1 + δ}

satisfies Hs(S) = 0. Fix ε > 0 and let U ⊃ S be open with
Hs(A ∩ U) ≤ Hs(S) + ε

(which exists by the outer regularity of the measureHs|A). Let Bϵ be the collection
of balls B centred at a point of S with radB < ε such that B ⊂ U and
(3.4) Hs(A ∩B) > (1 + δ)(2 radB)s.

This is a Vitali cover of S. Let B′
ϵ be obtained from Proposition 3.7.

Since Hs(S) < ∞, S is separable (see Exercise 3.6) and so B′
ϵ = {B1, B2, . . .} is

countable and the conclusion of Proposition 3.7 states that

S \
⋃
i∈N

Bi ⊂
⋃
i>n

5Bi

for each n ∈ N. Since diamBi < ε for each i ∈ N, the Bi and 5Bi may be used to
estimateHs

10ϵ(S). For each n ∈ N we obtain

Hs
10ϵ(S) ≤

∑
i∈N

(2 radBi)s +
∑
i>n

(10 radBi)s

≤
∑
i∈N

Hs(A ∩Bi)
1 + δ

+ 5s
∑
i>n

Hs(A ∩Bi)
1 + δ

where the second inequality follows by (3.4). Since theBi are disjoint andHs(A) <
∞, the second term converges to 0 as n → ∞. Since the Bi are subsets of U we
obtain

Hs
10ϵ(S) ≤

Hs(A ∩ U)

1 + δ
≤ Hs(S) + ε

1 + δ
.

Since ε > 0 is arbitrary, this implies Hs(S) ≤ Hs(S)/(1 + δ) and hence Hs(S) = 0,
as required. □

Lemma 3.12. Let X be a metric space, s ≥ 0 and let A ⊂ X be Hs-measurable with
Hs(A) <∞. Then

Θ∗,s(A, x) = 0

forHs-a.e. x 6∈ A.
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Proof. It suffices to show that, for t > 0, the set
S = {x ∈ X \A : Θ∗,n(A, x) > t}

satisfies Hs(S) = 0. Fix ε > 0. Since A is Hs-measurable, Hs|A is Borel regular.
Therefore, since Hs|A(S) = 0, there exists an open U ⊃ S with

Hs(A ∩ U) = Hs|A(U) < ε.

For each x ∈ S and δ > 0 there exists a ball B centred on x with radB < δ such
that

Hs(A ∩B)

(2 radB)s
> t.

By Lemma 3.5 there exists a disjoint collection B of such balls such that

S ⊂
⋃
B∈B

5B.

SinceHs(A) <∞, A is separable and each of these balls contains a point of A, B is
countable. Therefore

tHs
5δ(S) ≤ t

∑
B∈B

(2 rad 5B)s < 5s
∑
B∈B

Hs(A ∩B) ≤ 5sHs(A ∩ U) < 5sε.

Since δ, ε > 0 are arbitrary, this completes the proof. □
We also require a version of the coarea formula.

Lemma 3.13. LetK be a compact metric space and g : K → Y Lipschitz. For any s > 0,∫
Y

card(g−1(y))dHs(y) ≤ Hs(K).

Proof. SinceK is compact,
f(y) = card(g−1(y))

is a Borel function. Indeed, for δ > 0 define
fδ(y) = max{n ∈ N : ∃x1, . . . , xn ∈ g−1(y) with ‖xi − xj‖ ≥ δ ∀1 ≤ i 6= j ≤ n}.

Then fδ monotonically increases to f as δ → 0. SinceK is compact, the fδ are lower
semi-continuous and hence f is Borel. Moreover, by the monotone convergence
theorem, it suffices to bound the integral of each fδ .

Fix δ > 0 and decomposeK into disjoint sets E1, E2, . . .with diamEi < δ. Then
fδ(y) ≤ card({i : Ei ∩ g−1(y) 6= ∅}).

Therefore ∫
Y

fδ dHs ≤
∫
Y

∑
i∈N

χ{(i,y):Ei∩g−1(y) ̸=∅} dHs

=
∑
i∈N

∫
Y

χ{(i,y):Ei∩g−1(y) ̸=∅} dHs

≤
∑
i∈N

Hs(g(Esi )) ≤
∑
i∈N

Hs(Esi ) = Hs(K)

as required. □
The final result we require in order to prove Theorem 3.2 is the folowing special

case of the Lusin-Novikov theorem from descriptive set theory, see [15, Exercise
18.14].
Lemma 3.14. LetK and Y be compact metric spaces and f : K → Y Borel. Suppose that
card f−1(y) <∞ for every y ∈ Y . Then there exists a Borel function g : f(K) → K such
thatK ′ := g(f(K)) is Borel and f(g(y)) = y for all y ∈ f(K).
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Proof. First note that, for each n ∈ N,
Y ′
n := {y ∈ Y : card f−1(y) ≤ n}

is Borel. Indeed, for n = 0 this is immediate and for n ≥ 1 we have

Y ′
n =

⋃
k∈N

{y ∈ Y : ∃x1, . . . , xn ∈ f−1(y), d(xi, xj) ≥
1

k
1 ≤ i 6= j ≤ n}.

Since f is continuous and K is compact, each term in this union is a closed subset
of f(K) and hence Y ′

n is Borel. Consequently,
Yn := {y ∈ Y : card f−1(y) = n}

is also Borel, as are the closed subsets

Y kn := {y ∈ Y : card f−1(y) = n, d(x, x′) ≥ 1

k
∀x 6= x′ ∈ f−1(y)}.

Moreover, f(K) is covered by the countable union of the Y kn , k, n ∈ N.
For fixed k, n ∈ N let B1, . . . , BN be balls of radius 1/k that cover K. Then the

sets
Y kn,i := {y ∈ Y kn : card f−1(y) ∩Bi = 1}

cover Y kn and are closed. Define g : f(K) → K on each Y kn,i by mapping y to the
unique element of f−1(y)∩Bi. Then g is continuous on each Y kn,i and hence Borel.

Finally, g(f(K)) is a countable union of sets of the form f−1(Y kn,i) ∩ Bi, each of
which are Borel. □

Proof of Theorem 3.2. First let V ⊂ X be Borel and note that (3.1) holds for the
function f |V and for Hs-a.e. x ∈ V . Indeed, for Hs-a.e. x ∈ V , Lemma 3.12,
Θ∗,s(X \ V, x) = 0 and for such an x,

lim sup
r→0

Hs(B(f(x), λxr) \ f(V ∩B(x, r)))

(2λxr)s
≤ lim sup

r→0

Hs(B(f(x), λxr) \ f(B(x, r)))

(2λxr)s

+ lim sup
r→0

LsHs(B(x, r) \ V )

(2λxr)s

<
1

2
Θs∗(Y, f(x)) +

Ls

λsx
Θ∗,s(X \ V, x).(3.5)

A consequence of (3.5) is
(3.6) Hs(V ) > 0 ⇒ Hs(f(V )) > 0.

Now suppose Hs(V ) > 0. By Lemma 3.13, for Hs-a.e. y ∈ Y , card f−1(y) < ∞.
Hence, by (3.6), forHs-a.e. x ∈ V ,
(3.7) card{x′ ∈ V : f(x′) = f(x)} <∞.

Let K ⊂ V be a positive measure Borel set for which (3.7) holds for all x ∈ K. By
Lemma 3.14, there exists a Borel function g : f(K) → K such that V ′ := g(f(K)) is
Borel and f(g(y)) = y for all y ∈ f(K). By (3.6), Hs(f(V ′)) = Hs(f(K)) > 0 and
hence, since f is Lipschitz, Hs(V ′) > 0.

Note that if x ∈ X satisfies (3.1), then it also satisfies (3.1) for all 0 < λ ≤ λx.
For i ∈ N let 1 ≥ λi ↘ 0 and define Si to be the set of x ∈ V ′ for which

sup
0<r<λi

Hs(B(f(x), λir) \ f(V ′ ∩B(x, r)))

(2λir)s
< inf

0<r′<λi

1

2
(1− λi)

s Hs(B(f(x), r′))

(2r′)s
.

Then, by (3.5), the Si monotonically increase to a full measure subset of V ′. There-
fore, there exist i ∈ N and S′ ⊂ Si with Hs(S′) > 0 and diamS′ ≤ λi. For any 0 <
r < λi, setting r′ = (1−λ2i )λir shows that f |V ′ satisfiesD(λi, (1−λ2i )λi, (1+λi)−s)



18 DAVID BATE

on S′. Since f |V ′ is injective, (3.2) holds for all x, y ∈ S′ and hence the Lemma
implies that f |S′ is bi-Lipschitz.

The bi-Lipschitz condition extends to the closure of S′. Hence S′ ∩ V is a Borel
subset of V of positive measure on which f is bi-Lipschitz. Since V is an arbitrary
Borel subset of positive measure, the conclusion follows by Exercise 3.5. □

Remark 3.15. That the converse to Theorem 3.2 is true. Namely, ifX is n-rectifiable
then there exist countably many Lipschitz functions f and R > 0 for which (3.1)
holds with λ = 1 (with respect to some norm). Indeed, the γi from Corollary 1.13
are such functions. If the rectifiable set is a subset of Euclidean space, finitely many
Lipschitz functions suffice (andmay be chosen to be the orthogonal projection onto
the span of n coordinate axes).

Theorem 3.2 is the starting point of the theory of rectifiability in metric spaces,
leading to characterisations given in [5, 6, 7]. Recall that a subset of a complete
metric space is residual if it contains a countable intersection of open dense sets. A
Hn-measurable subsetS of ametric spaceX is purelyn-unrectifiable ifHn(S∩E) = 0
for all n-rectifiable E ⊂ X .

Theorem 3.16 (B. [6], B, Orponen, Weigt [4]). Let X be a complete metric space and
S ⊂ X purely n-unrectifiable with Hn(S) < ∞. The set of all 1-Lipschitz f : X → Rn
with Hn(f(S)) = 0 is residual. Conversely, if E ⊂ X is n-rectifiable with Hn(E) > 0,
the set of 1-Lipschitz f : X → Rn withHn(f(E)) > 0 is residual.

Thismay be seen as a counterpart to the Besicovitch–Federer projection theorem
[18, Theorem 18.1]. Recent work with Takáč [8] shows that the converse statement
may be improved under hypotheses on X ; on the other hand, in some circum-
stances it is impossible to improve the converse statement.

3.1. Exercises.

Exercise 3.1. Let X be a metric space and s ≥ 0. A measure µ on X is Borel regular if
for every S ⊂ X there exists a Borel B ⊃ S with µ(B) = µ(S).

(1) Show that Hs is Borel regular. Hint: first show that in the definition of Hs, we
may take F to be the collection of closed sets.

(2) We are usually interested in Hs|A for some A ⊂ X . Show that for any A ⊂ X ,
Hs|A is a Borel measure.

(3) Now assume that A ⊂ X is Hs-measurable with Hs(A) < ∞. Show that Hs|A
is Borel regular. Hint: show that there exist Borel sets B ⊃ A ⊃ B′ withHs(B \
B′) = 0.

Exercise 3.2. LetX be a separable metric space. Show that for any collection of balls, there
exists a maximal disjoint sub-collection.

Exercise 3.3. Show that the 5r covering Lemma may not be true if the radii are not uni-
formly bounded.

Exercise 3.4. Let µ be a finite Borel measure on a metric space X . Prove that for every
Borel B ⊂ X ,
(3.8) µ(B) = sup{µ(C) : C ⊂ B closed}
and
(3.9) µ(B) = inf{µ(U) : U ⊃ B open}.
Property (3.8) is called inner regularity by closed sets and (3.9) is called outer regu-
larity by open sets.
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Hint: observe that it suffices to show that all Borel sets satisfy (3.8). Show that the set
{B ⊂ X : B and X \B satisfy (3.8)}

is a σ-algebra that contains all closed subsets of X .
Show that a σ-finite measure µ is inner regular by closed sets. Show that a σ-finite

measure µ is outer regular by open sets if there exist open sets Ui ⊂ X with µ(Ui) < ∞
for all i ∈ N and X =

⋃
i∈N Ui. Give an example of a σ-finite µ that is not outer regular

by open sets.
Prove that a σ-finite Borel regular measure on a complete and separable metric space is

inner regular by compact sets.
Exercise 3.5. Let µ be a finite measure on a set X . Let S be a collection of µ-measurable
subsets of X such that, for each µ-measurable S ⊂ X of positive measure, there exists
S′ ∈ S with µ(S′) > 0 and S′ ⊂ S. Show that there exists Si ∈ S with

µ

(
X \

⋃
i∈N

Si

)
= 0.

Exercise 3.6. For s ≥ 0 let X be a metric space with Hs(X) < ∞. Show that X is
separable.
Exercise 3.7. Extend Lemma 3.13 to the case that g : X → Y with X complete and sepa-
rable.
Exercise 3.8. (1) Suppose that µ is a doubling measure on X and B ⊂ X is Borel.

Use Theorem 3.9 to show that

lim
r→0

µ(B ∩B(x, r))

µ(B(x, r))
=

{
1 x ∈ B

0 x 6∈ B

for µ-a.e. x ∈ X .
(2) Suppose that S ⊂ X (not necessarily µ-measurable) and that B ⊃ S is µ-

measurable with µ(S) = µ(B). Show that µ(S ∩ M) = µ(B ∩ M) for all
µ-measurableM ⊂ X .

(3) Suppose that µ is an doubling Borel regular measure and that S ⊂ X . Show, even
if S is not µ-measurable, that

µ(S ∩B(x, r))

µ(B(x, r))
→ 1 as r → 0

for µ-a.e. x ∈ S.

4. CONVERGENCE OF METRIC MEASURE SPACES
Classically, rectifiable subsets of Euclidean space are characterised by the ex-

istence of an approximate tangent plane at almost every point. More precisely, let
E ⊂ Rm satisfy Hn(E) < ∞. Then E is n-rectifiable if and only if, for Hn-a.e.
x ∈ E, there exists an affine subspace Vx ⊂ Rm such that

(4.1) Hn(E ∩B(x, r) \ Vx)
rn

→ 0

as r → 0. See [18, Theorem 15.19]. Stronger statements implying rectifiability are
given by Besicovitch [9], Marstrand [17] and Mattila [19] by allowing the approx-
imating tangent plane to depend on r; the tangent may rotate as one zooms intoE.
See [18, Theorem 16.2].

Analogous statements hold for rectifiable subsets of a metric space. However, in
order to state the results, we must understand what we mean by a tangent in this
setting. Fundamentally, this requires us to define a notion of convergence of metric
measure spaces.
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4.1. Convergence of metric measure spaces.

Definition 4.1. For a completemetric spaceZ defineCbs(Z) to be the set of bounded
and continuous g : Z → R with bounded support. Also let Mloc(Z) denote the set
of Borel regular measures on Z that are finite on bounded sets.

We say that µi ∈ Mloc(Z) converges to µ ∈ Mloc(Z), written µi → µ, if∫
Z

g dµi →
∫
Z

g dµ

for all g ∈ Cbs(Z).
Definition 4.2. A pointed metric measure space (X, d, µ, x) consists of a complete and
separable metric space (X, d), a Borel regular measure µ ∈ Mloc(X) and a distin-
guished point x ∈ sptµ.

Inspired by the notion of Gromov–Hausdorff convergence (defined below), we
can consider convergence of pointed metric measure spaces.
Definition 4.3. A sequence (Xi, di, µi, xi) of pointed metric measure spaces con-
verges to a pointed metric measure space (X, d, µ, x) if there exists a complete met-
ric space Z and isometric embeddings Xi ↪→ Z, X ↪→ Z such that xi → x and
µi → µ in Z.

Anpoint thatwill becomevery useful later is that this convergence can bemetrised.
Fact. There exists a separable metric d∗ on the set of isometry classes of all pointed metric
measure spaces that metrises the convergence in Definition 4.3.

In this section we will prove the following theorem.
Theorem 4.4. Let (Xi, di, µi, xi) be a sequence of uniformly doubling metric measure
spaces such that
(4.2) sup

i

µi(B(xi, 1)) <∞.

There exists a pointed metric measure space (X, d, µ, x) such that (after possibly taking a
subsequence),

(Xi, di, µi, xi) → (X, d, µ, x).

4.2. Hausdorff distance. In order to prove Theorem 4.4, we must first discuss the
convergence of metric spaces. To do this, we first consider the convergence of sub-
sets of a fixed metric space.
Definition 4.5. LetX be ametric space. ForC,D ⊂ X , define theHausdorff distance
between C and D as

dH(C,D) = inf{r > 0 : B(C, r) ⊃ D, B(D, r) ⊃ C}.

Lemma 4.6. For any metric spaceX , dH satisfies the triangle inequality on the power set
ofX . Moreover, dH is a metric on Cb(X), the set of non-empty closed and bounded subsets
of X .
Proof. Let C,D,E ⊂ X and, for r, r′ > 0, suppose
(4.3) B(C, r) ⊃ D, B(D, r) ⊃ C, B(D, r′) ⊃ E, B(E, r′) ⊃ D.

Then, by the triangle inequality on X ,
B(C, r + r′) ⊃ E and B(E, r + r′) ⊃ C.

Indeed, if e ∈ E then there exist d ∈ D with d(d, e) ≤ r′ and c ∈ C with d(c, d) ≤ r.
Thus d(c, e) ≤ r + r′. Taking the infimum over all r, r′ > 0 satisfying (4.3) gives
the triangle inequality for dH.
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To see that dH is a metric on Cb(X), suppose that C,D ∈ Cb(X), dH(C,D) = 0
and x ∈ D. We need to show x ∈ C. Since D ⊂ B(C, r) for every r > 0, there
exist xn ∈ C with xn → x. Since C is closed, x ∈ C, as required. Finally, since the
elements of Cb(X) are non-empty and bounded, dH is finite on Cb(X). □

Proposition 4.7. If X is a complete metric space, then (Cb(X),dH) is also complete.

Proof. Let Cn be a Cauchy sequence in Cb(X). As usual, by taking a subsequence
if necessary, we may suppose that dH(Cn, Cm) < 2−n for each m ≥ n ∈ N. First
fix x1 ∈ C1 and let x2 ∈ C2 be such that d(x1, x2) < 2−1. Proceeding inductively,
we select xn ∈ Cn with d(xn−1, xn) < 2−n for each n ∈ N. Then xn is a Cauchy
sequence in X and hence converges to some x ∈ X . Now define

Dn =
⋃
k≥n

Ck,

a closed subset of X . Since xk ∈ Dn for all k ≥ n, x ∈ Dn for all n ∈ N. Therefore,
C := ∩nDn is closed and non-empty.

Since dH(Cn, Cm) < 2−n for eachm ≥ n ∈ N,

C ⊂ Dn ⊂ B(Cn, 2
−n)

for each n ∈ N. On the other hand, form ≥ n,

Cn ⊂ B(Cm, 2
−n) ⊂ B(Dm, 2

−n) ⊂ B(C, 21−n).

Thus dH(C,Cn) → 0, as required. □

Theorem 4.8 (Blaschke). If X is totally bounded then Cb(X) is too. In particular, if X
is compact then Cb(X) is.

Proof. For ε > 0 let F ⊂ X be finite such that B(F, ε) ⊃ X and let F be the set of
non-empty subsets of F . ThenB(F , ε) = Cb(X) (see Exercise 4.3) and hence Cb(X)
is totally bounded. □

4.3. Gromov–Hausdorff convergence. Gromov [12, 13] introduced the idea of
comparing different metric spaces by first embedding them into a common met-
ric space and taking the Hausdorff distance between their images. This induced
a metric, the Gromov–Hausdorff distance between two bounded metric spaces. For
our discussion, we only require the notion of convergence defined by this metric,
which we now state.

Definition 4.9. A sequence Xi of complete and bounded metric spaces Gromov–
Hausdorff converges to ametric spaceX if there exists ametric spaceZ and isometric
embeddings Xi ↪→ Z, X ↪→ Z such that Xi → X with respect to the Hausdorff
distance in X .

A key result of Gromov is the following compactness theorem [12].

Definition 4.10. A collection M of metric spaces is uniformly totally bounded if

sup{diamX : X ∈ M} <∞

and, for every ε > 0 there existsN ∈ N such that eachX ∈ M is covered byN balls
of radius ε.

Compare the proof of the following proposition to the Kuratowski embedding
given in Lemma 1.8.
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Proposition 4.11. Let Ni be a sequence of natural numbers and let S be the set of all
sequences n ∈ NN such that ni ≤ Ni for each i ∈ N. Let D > 0, εi = 2−i and let S ′ be
the set of all f : S → R with ‖f‖∞ ≤ D and the following property: If n, n′ ∈ S are such
that nk = n′k for all 1 ≤ k ≤ i, then |f(n)− f(n′)| ≤ 2εi. Then S ′ is compact.

Moreover, suppose thatX is a metric space with diamX ≤ D such that, for each i ∈ N,
there exist x1, . . . , xNi

∈ X with

X =

Ni⋃
k=1

B(xk, εi).

Then there exists an isometric embedding X ↪→ S ′.

Proof. Certainly S ′ is a closed subset of all bounded functions on S and hence is
complete. It is also totally bounded: for any i ∈ N, the set of functions mapping
each nk with 1 ≤ k ≤ i to an element of εi{0, . . . , dD/εie} (and all other nk to 0) is
a (finite) 2εi-net in S ′.

We encode any n ∈ S as a point inX as follows. First set y1 = xn1
. If d(xn2

, y1) ≤
ε1 then set y2 = xn2

. Otherwise set y2 = y1. We repeat this process iteratively: for
each i ∈ N, if d(xni

, yi−1) ≤ εi−1 then set yi = xni
, otherwise set yi = yi−1. Then

yi forms a Cauchy sequence inX , which converges to some y. We set e(n) = y. By
hypothesis, e is a surjection.

For x ∈ X now define ι(x) : S → R by
ι(x)(n) = d(x, e(n)),

so that ‖ι(x)‖ ≤ diamX ≤ D. Moreover, by construction, if n, n′ ∈ S are such that
ni = n′i for all 1 ≤ i ≤ k then

d(e(n), e(n′)) ≤ 2εi.

Consequently, by the triangle inequality,
|ι(x)(n)− ι(x)(n′)| ≤ 2εi

and so ι(x) ∈ S ′. Also by the triangle inequality, ι is 1-Lipschitz. Finally, if x, y ∈ X
and n ∈ S is such that e(n) = x, then

|ι(x)(n)− ι(y)(n)| = |d(x, x)− d(y, x)|,
and so ι is an isometry. □

Theorem 4.12. LetXi be a uniformly totally bounded sequence of compact metric spaces.
Then there exists a compact metric space X such that (after possibly passing to a subse-
quence) Xi Gromov–Hausdorff converges to X .

Proof. Combine Proposition 4.11 and Theorem 4.8 □

Proof of Theorem 4.4. First fix R ∈ N and consider the sequence
(B(xi, R), di, (µi)|B(xi,R), xi).

By Exercise 4.5 the Yi are uniformly totally bounded. By Theorem 4.12, after pass-
ing to a subsequence, there exists a compact metric space Z and isometric embed-
dings Yi ↪→ Z such that Yi → X in Z. By taking a further subsequence, we may
suppose xi converges to some x ∈ X .

By (4.2) and the uniformdoublingproperty, µi(Yi) is uniformly bounded. There-
fore, by theRiesz representation theorem,wemaypass to another subsequence and
suppose that (µi)|B(xi,R) → µ inMloc(Z).

The final step is to repeat the first part of the argument, for each R ∈ N, on the
spaces B(xi, R), and take a diagonal subsequence (this requires the fact that this
convergence is metrisable). □
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4.4. Exercises.
Exercise 4.1. Show that the Hausdorff distance between any set and its closure is zero.
Exercise 4.2. Show that X isometrically embeds into Cb(X) and that it’s image is closed.
Hence show that the converses to Proposition 4.7 and Theorem 4.8 are true.
Exercise 4.3. Complete the proof of Theorem 4.8.
Exercise 4.4. Show that S ⊂ (K,dGH) is totally bounded if and only if it is uniformly
totally bounded.
Exercise 4.5. Let (X, d, µ) be a C-doubling metric space. Show that there exists N ∈ N,
depending only upon C, such that each ball B(x, r) in X may be covered by N balls of
radius r/2. That is X is a doubling metric space.

5. TANGENT SPACES OF POINTED METRIC MEASURE SPACES
Definition 5.1. For (X, d, µ, x) ∈ Mloc and r > 0 let

Tr(X, d, µ, x) =

(
X,

d

ri
,

µ

µ(B(x, ri))
, x

)
.

A tangent space of (X, d, µ, x) is any (Y, ρ, ν, y) ∈ Mloc for which there exist ri → 0
such that

Tr(X, d, µ, x) → (Y, ρ, ν, y).

We write Tan(X,µ, x) for the set of all tangent spaces to (X,µ, x).
Proposition 5.2. Let X be a metric space and let µ ∈ Mloc(X) be doubling. For µ-a.e.
x ∈ X and R > 0,
(5.1) {Tr(µ, x) : 0 < r < R} is pre-compact.
In particular, Tan(µ, x) is a non-empty compact metric space when equipped with d∗ and
(5.2) ∀δ > 0, ∃rx > 0 s.t. d∗(Tr(µ, x),Tan(µ, x)) ≤ δ ∀0 < r < rx.

Proof. First note that, for any r > 0,
µ(Bd/r(x,R))

µ(Bd(x, r))
=
µ(Bd(x,Rr))

µ(Bd(x, r))
≤ C

4 log2 R
µ .

Here the subscripts on the balls indicate the metrics used to define the balls. Thus
{ν(B(x,R)) : (ν, x) ∈ Tr(µ, x), 0 < r < R}

is bounded and themeasures inTr(µ, x) are uniformly doubling. Thus Theorem4.4
implies (5.1).

By applying (5.1) to an arbitrary sequence ri → 0 we see that Tan(µ, x) is non-
empty. To see that it is compact, for each j ∈ N let (νj , yj) ∈ Tan(µ, x) and let
0 < rj < 1/j be such that

d∗(Trj (µ, x), (νj , yj)) < 1/j.

By (5.1) there exists a subsequence rjk → 0 and a (ν, y) ∈ M such that
d∗(Trjk (µ, x), (ν, y)) → 0.

In particular, (ν, y) ∈ Tan(µ, x) and, by the triangle inequality, (νjk , yjk) → (ν, y),
as required.

Finally, given δ > 0, the existence of such an rx is given by the contrapositive to
(5.1). □

Tangent measures were first defined, for measures on a fixed Euclidean space,
by Preiss [20]. Those tangent measures satisfy many important properties that we
now show also hold in our more general setting.
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Lemma 5.3. LetX be a metric space, µ ∈ Mloc(X) and x ∈ sptµ. Suppose that (Y, ν, y)
is a pointed metric measure space and rk → 0 is such that

d∗

((
µ

µ(B(x, rk))
,
d

rk
, x

)
, (ν, y)

)
→ 0.

Suppose that x is a density point of E ⊂ X . Then for any b ∈ spt ν, there exists bk ∈ E
such that

d∗

((
µ

µ(B(x, rk))
,
d

rk
, bk

)
, (ν, b)

)
→ 0.

Proof. Let (Z, ζ) be a complete and separable metric space for which there exist
isometric embeddings

(sptµ, d
rk
, x), (spt ν, y) ↪→ (Z, ζ)

such that (writing µk and xk for the isometric copy of µ ∈ Mloc(X,
d
rk
) and x re-

spectively) xk → y and
µk

µ(B(x, rk))
→ νx.

Also let Ek be the isometric copy of (E, drk ).
Now let b ∈ spt ν and set R = 2ζ(y, b). Since x is a density point of E,

(5.3) lim
k→∞

µk(Ek ∩B(xk, R))

µk(B(xk, R))
= lim
k→∞

µ(E ∩B(x,Rrk))

µ(B(x,Rrk))
= 1.

We claim that, for any b ∈ spt ν, there exists bk ∈ Ek with ζ(b, bk) → 0. Indeed, if
not, there exists δ > 0 such that B(b, δ) ∩Ek = ∅ for infinitely many k. Exercise 5.1
then implies

lim inf
k→∞

µk(Ek ∩B(xk, R))

µk(B(xk, R))
≤ 1− lim sup

k→∞

µk(B(b, δ))

µk(B(xk, R))

≤ 1−
ν(B(b, δ2 ))

ν(B(y, 2R))
< 1,

since b ∈ spt ν. This contradicts (5.3) and so the claim holds. □

Proposition 5.4. Let (X, d, µ) be doubling.
(1) For any x ∈ X and s > 0,

(Y, ρ, ν, y) ∈ Tan(X, d, µ, x) ⇒ (Y, sρ, ν, y) ∈ Tan(X, d, µ, x).

(2) For µ-a.e. x ∈ X ,
(Y, ρ, ν, y) ∈Tan(X, d, µ, x) and (Z, ζ, λ, z) ∈ Tan(Y, ρ, ν, y)

⇒ (Z, ζ, λ, z) ∈ Tan(X, d, µ, x).

(3) For µ-a.e. x ∈ X ,
(Y, ρ, ν, y) ∈ Tan(X, d, µ, x) and z ∈ spt ν ⇒ (Y, ρ, ν, z) ∈ Tan(X, d, µ, x).

Proof. The first point simply follows from appropriately scaling the embeddings in
the definition of Tan(X, d, µ, x). The second point then follows from the first and
Proposition 5.2. The proof of the third point depends on the existence of d∗.

For η > 0 let Aη be the set of x ∈ sptµ for which there exist (νx, yx) ∈ Tan(µ, x)
and bx ∈ spt νx such that

d∗((νx, bx), Tr(µ, x)) > η ∀0 < r < η.
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Note that, if x 6∈ ∪i∈NA1/i, then x satisfies the required conclusion. We suppose
that µ(Aη) > 0 for some η > 0 and aim for a contradiction. Since d∗ is separable,
there exists E ⊂ Aη with µ(E) > 0 such that

(5.4) d∗((νx, bx), (νx′ , bx′)) <
η

2

for every x, x′ ∈ E.
By Corollary 3.10 there exists a density point x of E. By Lemma 5.3, there exist

bk ∈ E be such that

d∗

((
µ

µ(B(x, rk))
,
d

rk
, bk

)
, (νx, bx)

)
→ 0.

Let k ∈ N satisfy rk < η and

d∗

((
µ

µ(B(x, rk))
,
d

rk
, bk

)
, (νx, bx)

)
<
η

2
.

However, since bk ∈ E,

η < d∗

((
µ

µ(B(x, rk))
,
d

rk
, bk

)
, (νbk , bbk)

)
≤ d∗

((
µ

µ(B(x, rk))
,
d

rk
, bk

)
, (νx, bx)

)
+ d∗((νx, bx), (νbk , bbk))

≤ η

2
+
η

2
,

using (5.4) for the final inequality. This contradiction implies that we must have
µ(Aη) = 0 for all η > 0. □

Remark 5.5. The above theory extends to tangents of asymptotically doubling metric
spaces, which satisfy the weaker hypothesis

lim sup
r→0

µ(B(x, 2r))

µ(B(x, r))
<∞

for µ-a.e. x ∈ X . In order to establish this, minor technical modifications to the
statement and proof of Theorem 4.4 are required. Once this is obtained, Proposi-
tions 5.2 and 5.4 follow as above. By Theorem 1.15, Hausdorff measure restricted
to a rectifiable set is asymptotically doubling.

We now return to rectifiable sets. A consequence of Theorem 1.15 is the follow-
ing.

Theorem 5.6. Let (X, d) be a complete metric space, n ∈ N and E ⊂ X an n-rectifiable
set withHn(E) <∞. ForHn-a.e. x ∈ E,

Tan(X, d,Hn|E , x) = {(Rn, ‖ · ‖x,Hn/2n, 0)}

as r → 0.

In fact, rectifiable metric spaces can be characterised via tangent spaces.

Theorem 5.7 ([5]). Let (X, d) be a complete metric space, n ∈ N and E ⊂ X a Hn-
measurable set with Hn(E) < ∞. Suppose that, for Hn-a.e. x ∈ E, Θn∗ (E, x) > 0 and
there exists a Kx ≥ 1 such that each element of Tan(X, d,Hn|E , x) is supported on a
Kx-bi-Lipschitz image of Rn. Then E is n-rectifiable.



26 DAVID BATE

5.1. Exercises.
Exercise 5.1. Suppose that µi → µ in Mloc(Z) and xi → x. Show that
(5.5) µ(U(x, r)) ≤ lim inf

i→∞
µi(U(xi, r))

and
(5.6) µ(B(x, r)) ≥ lim sup

i→∞
µi(B(xi, r)).
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